Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Mar 2023
ReviewThe development of traumatic brain injury associated intracranial hypertension prediction algorithms.
Traumatic intracranial hypertension (tIH) is a common and potentially lethal complication of moderate to severe traumatic brain injury (m-sTBI). It often develops with little warning and is managed reactively with the tiered application of intracranial pressure (ICP)-lowering interventions administered in response to an ICP rising above a set threshold. For over 45 years, a variety of research groups have worked toward the development of technology to allow for the preemptive management of tIH in the hope of improving patient outcomes. ⋯ In this review, we discuss related approaches to ICP forecasting and IH prediction algorithms, which collectively provide the foundation for the successful development of an operational tIH prediction system. We also discuss operationalization and the statistical assessment of tIH algorithms. This review will be of relevance to clinicians and researchers interested in development of this technology as well as those with a general interest in the bedside application of machine learning (ML) technology.
-
Minerva anestesiologica · Mar 2023
ReviewNoninvasive intracranial pressure monitoring in central nervous system infections.
Intracranial pressure (ICP) monitoring constitutes an important part of the management of traumatic brain injury. However, its application in other brain pathologies such as neuroinfections like acute bacterial meningitis is unclear. Despite focus on aggressive, prompt treatment, morbidity and mortality from acute bacterial meningitis remain high. ⋯ Non-invasive screening using ultrasound of the optical nerve sheath, transcranial doppler, magnetic resonance imaging or preferably a combination of these modalities, provides measurements that can be used as a decision guidance for invasive ICP measurement. The available data do not support the replacement of invasive techniques for continuous ICP measurement in patients with increased ICP. Non-invasive modalities should be taken into consideration in patients with neuroinfections at low risk of increased ICP.
-
Journal of neurotrauma · Mar 2023
ReviewRacial/Ethnic Differences in Traumatic Brain Injury: Pathophysiology, Outcomes and Future Directions.
Traumatic brain injury (TBI) is a major cause of death and disability in the United States, exacting a debilitating physical, social, and financial strain. Therefore, it is crucial to examine the impact of TBI on medically underserved communities in the U. S. ⋯ In the absence of studies on racial/ethnic differences in TBI pathobiology, taking an indirect approach, we looked for studies examining racial/ethnic differences in oxidative stress and inflammation outside the scope of TBI as they are known to heavily influence TBI pathobiology. The literature indicates that Blacks/African Americans have greater inflammation and oxidative stress compared with Non-Hispanic Whites. We propose that future studies investigate the possibility of racial/ethnic differences in inflammation and oxidative stress within the context of TBI to determine whether there is any relationship or impact on TBI outcome.
-
The presence of traumatic intraventricular hemorrhage (tIVH) following traumatic brain injury (TBI) is associated with worse neurological outcome. The mechanisms by which patients with tIVH have worse outcome are not fully understood and research is ongoing, but foundational studies that explore prognostic factors within tIVH populations are also lacking. This study aimed to further identify and characterize demographic and clinical variables within a subset of patients with TBI and tIVH that may be implicated in tIVH outcome. ⋯ This study represents one of the largest investigations into prognostic factors for patients with tIVH and demonstrates that admission hemoglobin level and hypotension are associated with outcomes in this patient population. These findings add value to established prognostic scales, could inform future predictive modeling studies, and may provide potential direction in early medical management of patients with tIVH.
-
Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. ⋯ Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.