Articles: traumatic-brain-injuries.
-
Functional outcomes after traumatic brain injury (TBI) can be significantly improved by discharge to posthospitalization care facilities. Many variables influence the discharge disposition of the TBI patient, including insurance status, patient condition, and patient prognosis. The literature has demonstrated an ethnic disparity in posthospitalization care referral, with Hispanics being discharged to rehabilitation and nursing facilities less often than non-Hispanics. However, this relationship has not been studied in a Hispanic-majority population, and thus, this study seeks to determine if differences in neurorehabilitation referrals exist among ethnic groups in a predominately Hispanic region. ⋯ This study suggests that patients of different ethnicities but comparable traumatic severity and insurance status receive different discharge dispositions post-TBI even in regions in which Hispanics are the demographic majority.
-
Cell transplantation · Jul 2017
Progesterone Sharpens Temporal Response Profiles of Sensory Cortical Neurons in Animals Exposed to Traumatic Brain Injury.
Traumatic brain injury (TBI) initiates a cascade of pathophysiological changes that are both complex and difficult to treat. Progesterone (P4) is a neuroprotective treatment option that has shown excellent preclinical benefits in the treatment of TBI, but these benefits have not translated well in the clinic. We have previously shown that P4 exacerbates the already hypoactive upper cortical responses in the short-term post-TBI and does not reduce upper cortical hyperactivity in the long term, and we concluded that there is no tangible benefit to sensory cortex firing strength. ⋯ In the long term, TBI broadens the response profile in all cortical layers despite firing rate hyperactivity being localized to upper cortical layers and P4 sharpens the response profile in TBI animals in all layers other than L2 and has no long-term effect in the sham brain. These results indicate that P4 has long-term effects on sensory coding that may translate to beneficial perceptual outcomes. The effects seen here, combined with previous beneficial preclinical data, emphasize that P4 is still a potential treatment option in ameliorating TBI-induced disorders.
-
Journal of neurosurgery · Jul 2017
Treatment of traumatic brain injury with 17α-ethinylestradiol-3-sulfate in a rat model.
OBJECTIVE 17α-ethynylestradiol-3-sulfate (EE-3-SO4) is a highly water-soluble synthetic estrogen that has an extended half-life (∼ 10 hours) over that of naturally occurring estrogen (∼ 10 minutes). In this study, EE-3-SO4 was evaluated in a lateral fluid percussion-induced traumatic brain injury (TBI) model in rats. METHODS A total of 9 groups of Sprague-Dawley rats underwent craniectomy. ⋯ Also, EE-3-SO4 treatment significantly increased the fractional anisotropy of the white matter in the ipsilateral side (p = 0.003) and cerebral glycolysis (p = 0.014). The mean duration that EE-3-SO4-treated animals spent in the center area was 12 ± 2 seconds, which was significantly longer than that of vehicle-treated animals (4 ± 1 seconds; p = 0.008) but not different from that of sham animals (11 ± 3 seconds; p > 0.05). CONCLUSIONS These data support the clinical use of EE-3-SO4 for early TBI treatment.
-
J Trauma Acute Care Surg · Jul 2017
Aeromedical evacuation-relevant hypobaria worsens axonal and neurologic injury in rats after underbody blast-induced hyperacceleration.
Occupants of military vehicles targeted by explosive devices often suffer from traumatic brain injury (TBI) and are typically transported by the aeromedical evacuation (AE) system to a military medical center within a few days. This study tested the hypothesis that exposure of rats to AE-relevant hypobaria worsens cerebral axonal injury and neurologic impairment caused by underbody blasts. ⋯ Exposure of rats to blast-induced acceleration of 100G increases cerebral axonal injury, which is significantly exacerbated by exposure to hypobaria as early as 6 hours and as late as 6 days postblast. Rats exposed to underbody blasts and then to hypobaria under 100% O2 exhibit increased axonal damage and impaired motor function compared to those subjected to blast and hypobaria under 21% O2. These findings raise concern about the effects of AE-related hypobaria on TBI victims, the timing of AE after TBI, and whether these effects can be mitigated by supplemental oxygen.
-
According to the Defense and Veterans Brain Injury Center and the Armed Forces Health Surveillance Center, the number of soldiers who have sustained a traumatic brain injury (TBI) has risen dramatically over the past decade. Studies have shown that brain damage can be exacerbated if blood loss occurs (often occurring in polytrauma). As blood supply is critical for brain function and survival, TBI patients must be properly resuscitated to maintain blood volume, blood pressure, and cerebral perfusion. Recent studies have suggested that blood loss can damage the vascular endothelium and enhance blood-brain barrier (BBB) permeability. Brain endothelial cells and the tight junctions between them are key structural components of the BBB. As the BBB is critical for isolating the brain from potential pathogens and for regulating the influx of molecules into the brain, evaluation of resuscitation fluids for their efficacy to improve BBB function has clinical relevance. Although whole blood and fresh frozen plasma (FFP) contain the essential coagulation factors, ions, and other factors, the transport and storage of these products in remote, austere environments can be challenging. The use of spray-dried plasma (SDP) has several advantages including storage at ambient temperature, can be readily reconstituted before use, and infectious materials can be inactivated during the drying process. In this study, we compared FFP and SDP for their effects on blood pressure, cerebral blood flow, BBB integrity, and markers of endothelial cells and tight junction proteins, in TBI animals with blood loss. ⋯ These preclinical results show that resuscitation with SDP may be superior to FFP, and support the further evaluation of this product as a resuscitation fluid for polytrauma patients with TBI.