Articles: traumatic-brain-injuries.
-
Journal of critical care · Jun 2017
Randomized Controlled TrialMild induced hypothermia for patients with severe traumatic brain injury after decompressive craniectomy.
To evaluate the efficacy and safety of mild induced hypothermia for intracranial hypertension in patients with traumatic brain injury after decompressive craniectomy. ⋯ Mild induced hypothermia can reduce intracranial hypertension after decompressive craniectomy, decreasing patient mortality. Hypothermia should be considered one of the main treatments for intracranial hypertension after decompressive craniectomy in patients with traumatic brain injury.
-
Severe traumatic brain injury (TBI) is currently managed in the intensive care unit with a combined medical-surgical approach. Treatment aims to prevent additional brain damage and to optimise conditions for brain recovery. ⋯ Targeted treatment is especially relevant for elderly people-who now represent an increasing proportion of patients with TBI-as preinjury comorbidities and their therapies demand tailored management strategies. Progress in monitoring and in understanding pathophysiological mechanisms of TBI could change current management in the intensive care unit, enabling targeted interventions that could ultimately improve outcomes.
-
Current events within the military and professional sports have resulted in an increased recognition of the long-term and debilitating consequences of traumatic brain injury. Mild traumatic brain injury accounts for the majority of head injuries, and posttraumatic headache is the most common adverse effect. It is estimated that between 30% to 90% of traumatic brain injuries result in posttraumatic headache, and for a significant number of people this headache disorder can continue for up to and over a year post injury. ⋯ There are surprisingly few preclinical studies that have investigated overlapping mechanisms between posttraumatic headache and migraine, especially considering the prevalence and debilitating nature of posttraumatic headache. Given this context, posttraumatic headache is a field with many emerging opportunities for growth. The frequency of posttraumatic headache in the general and military population is rising, and further preclinical research is required to understand, ameliorate, and treat this disabling disorder. © 2017 Wiley Periodicals, Inc.
-
Journal of neurotrauma · Jun 2017
Influence of Dopamine-Related Genes on Neurobehavioral Recovery after Traumatic Brain Injury during Early Childhood.
The present study examined the association of dopamine-related genes with short- and long-term neurobehavioral recovery, as well as neurobehavioral recovery trajectories over time, in children who had sustained early childhood traumatic brain injuries (TBI) relative to children who had sustained orthopedic injuries (OI). Participants were recruited from a prospective, longitudinal study evaluating outcomes of children who sustained a TBI (n = 68) or OI (n = 72) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at the immediate post-acute period (0-3 months after injury); 6, 12, and 18 months after injury; and an average of 3.5 and 7 years after injury. ⋯ After controlling for premorbid child functioning, genetic variation within the SLC6A3 (rs464049 and rs460000) gene was differentially associated with neurobehavioral recovery trajectories over time following TBI relative to OI, with rs464049 surviving multiple testing corrections. In addition, genetic variation within the ANKK1 (rs1800497 and rs2734849) and SLC6A3 (rs464049, rs460000, and rs1042098) genes was differentially associated with short- and long-term neurobehavioral recovery following TBI, with rs460000 and rs464049 surviving multiple testing corrections. The findings provide preliminary evidence that genetic variation in genes involved in DRD2 expression and density (ANKK1) and dopamine transport (SLC6A3) plays a role in neurobehavioral recovery following pediatric TBI.
-
Experimental neurology · Jun 2017
Defining the biomechanical and biological threshold of murine mild traumatic brain injury using CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration).
CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a recently described animal model of traumatic brain injury (TBI) that primarily produces diffuse axonal injury (DAI) characterized by white matter inflammation and axonal damage. CHIMERA was specifically designed to reliably generate a variety of TBI severities using precise and quantifiable biomechanical inputs in a nonsurgical user-friendly platform. The objective of this study was to define the lower limit of single impact mild TBI (mTBI) using CHIMERA by characterizing the dose-response relationship between biomechanical input and neurological, behavioral, neuropathological and biochemical outcomes. ⋯ Impact energies of 0.4J or below produced no significant phenotype (subthreshold), 0.5J led to significant changes for one or more phenotypes (threshold), and 0.6 and 0.7J resulted in significant changes in all outcomes assessed (mTBI). We further show that linear head kinematics are the most robust predictors of duration of unconsciousness, severity of neurological deficits, white matter injury, and microgliosis following single TBI. Our data extend the validation of CHIMERA as a biofidelic animal model of DAI and establish working parameters to guide future investigations of the mechanisms underlying axonal pathology and inflammation induced by mechanical trauma.