Articles: traumatic-brain-injuries.
-
Ageing research reviews · Mar 2017
ReviewDisordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders.
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. ⋯ In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
-
Journal of neurotrauma · Mar 2017
Regional grey matter volume loss is associated with gait impairments in young brain-injured individuals.
Traumatic brain injury (TBI) often leads to impairments in gait performance. However, the underlying neurostructural pathology of these gait deficits is poorly understood. We aimed to investigate regional gray matter (GM) volume in young moderate-to-severe TBI participants (n = 19; age 13 years 11 months ±3 years 1 month), compared with typically developing (TD) participants (n = 30; 14 years 10 months ±2 years 2 months), and assess whether reduced volume was related to impaired gait performance in TBI participants. ⋯ Moreover, in the TBI group, volume losses in subcortical ROIs were highly inter-correlated, indicating that atrophy tends to occur in combined subcortical structures. Finally, it was demonstrated, for the first time, that gait abnormalities in TBI subjects were associated with reduced volume in specific GM structures, including the hippocampus, thalamus, and the cerebellar, superior frontal, paracentral, posterior cingulate, and superior parietal cortices. The present study is an important first step in the understanding of the neurostructural pathology underlying impaired gait in TBI patients.
-
The Pediatric Emergency Care Applied Research Network (PECARN) head trauma prediction rules are used to assist computed tomography (CT) decision-making for children with minor head trauma. Although the PECARN rules have been validated in North America and Europe, they have not yet been validated in Asia. In Japan, there are no clinical decision rules for children with minor head trauma. The rate of head CT for children with minor head trauma in Japan is high since CT is widely accessible across the country. The objective of this study was to evaluate the diagnostic accuracy of the PECARN rules for identifying clinically important traumatic brain injuries (ciTBI) in children with minor head trauma in Japan. ⋯ The PECARN rules were less sensitive for physically abused children, although the rules showed excellent applicability for the cohort without physical abuse. Thoughtful consideration may be needed for cases of nonaccidental trauma. Further prospective studies are required to verify the applicability of the PECARN rules for children with minor head trauma in Japan.
-
Arch Clin Neuropsychol · Mar 2017
The Development and Psychometric Evaluation of a Supplementary Index Score of the Neuropsychological Assessment Battery Screening Module that is Sensitive to Traumatic Brain Injury.
This study examines the validity of the NAB Screening Module (screening module of the neuropsychological assessment battery, S-NAB) in an acute traumatic brain injury (TBI) inpatient population and provides psychometric evaluation of an original index sensitive to TBI impairment. ⋯ The S-NAB TBI index is a robust, reliable screening index for use with acute TBI patients, which is sensitive to the effects of acute TBI. It affords a briefer cognitive screen than the S-NAB and demonstrates a dose response relationship to TBI severity.
-
Retrospective studies of TBI have found a neuroendocrine dysfunction following traumatic brain injury in 23 to 60% of adults and 15 to 21% of children. Our aims were to determine the prevalence of hypothalamo-hypophyseal dysfunction in children following brain injury, assess its relationship to the type of injury and the course of the acute post-traumatic phase. ⋯ Within a year after injury, a hormonal disorder was found in 17.6% of the patients. Neuroendocrine dysfunction as a late consequence of craniocerebral trauma in children and adolescents was less frequent than in adults. Risk factors for its development are the gravity of the injury, brain scan pathology, and possibly the development of DI, SIADH, or CSWS in the acute post-traumatic phase.