Articles: pulmonary-fibrosis-etiology.
-
We herein report a case of anti-MDA5 antibody-positive, clinically amyopathic dermatomyositis complicated by unilateral interstitial lung disease (ILD) in a 78-year-old man with a history of left lung tumor resection. He was admitted due to a persistent fever and abnormal right pulmonary opacity. ⋯ Findings from multiple evaluations, including dynamic breathing magnetic resonance imaging, supported decreased perfusion, ventilation, and mobility of the left lung as etiological factors of unilateral lung ILD. When patients present with laterality of such findings, clinicians should be aware that atypical imaging findings may be observed.
-
Individuals with HIV have ∼2-fold increased risk of developing pulmonary fibrosis. The mechanism(s) by which this occurs has yet to be determined. HIV-1 protein gp120 activates CXCR4 in the lymphocyte, promoting a variety of intracellular signaling pathways including those common to TGFβ1 associated with lung fibroblast-to-myofibroblast transdifferentiation. We hypothesized that gp120 promotes pulmonary fibrotic changes via activation of CXCR4 in the lung fibroblast. ⋯ gp120 induces α-SMA expression and fibroblast-to-myofibroblast transdifferentiation by activating the CXCR4-ERK1/2 signaling pathway in mouse PLFs. Lungs of older HIV-1 transgenic mice contain higher hydroxyproline content and their PLFs have a striking increase in α-SMA expression. These results suggest a mechanism by which individuals with HIV are at increased risk of developing pulmonary fibrotic changes as they age.
-
Mutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC-Tert cKO) mice by crossing floxed Tert mice with inducible SPC-driven Cre mice. ⋯ These findings suggest that AECII-specific TERT deficiency enhances pulmonary fibrosis by heightening susceptibility to bleomycin-induced epithelial injury and diminishing epithelial regenerative capacity because of increased cellular senescence. We confirmed evidence for increased AECII senescence in idiopathic pulmonary fibrosis lungs, suggesting potential clinical relevance of the findings from our animal model. Our results suggest that TERT has a protective role in AECII, unlike its pro-fibrotic activity, observed previously in fibroblasts, indicating that TERT's role in pulmonary fibrosis is cell type-specific.
-
Antioxid. Redox Signal. · May 2019
Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis.
Pulmonary fibrosis (PF) is characterized by myofibroblast activation through oxidative stress. However, the precise regulation of myofibroblast transdifferentiation remains largely uncharacterized. ⋯ In this study, we found that tanshinone IIA (Tan-IIA), an active component in the root of Salvia miltiorrhiza Bunge, can suppress reactive oxygen species (ROS)-mediated activation of myofibroblast and reduce extracellular matrix deposition in bleomycin (BLM)-challenged mice through the regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). Additionally, Tan-IIA restored redox homeostasis by upregulating Nrf2 with NADPH oxidase 4 suppression and effectively prevented myofibroblast activation by blocking ROS-mediated protein kinase C delta (PKCδ)/Smad3 signaling. Nrf2 knockdown in the fibroblasts and the lungs of BLM-treated mice reduced the inhibitory effects of Tan-IIA, indicating the essential role of Nrf2 in the Tan-IIA activity. Tan-IIA impaired the binding of kelch-like ECH-associated protein 1 (Keap1) to Nrf2 by promoting the degradation of Keap1 and thereby increasing Nrf2 induction by protecting Nrf2 stability against ubiquitination and proteasomal degradation. Importantly, we also found that the glutamate anaplerotic pathway was involved in energy generation and biosynthesis in activated myofibroblasts and their proliferation. Tan-IIA shunted glutaminolysis into glutathione (GSH) production by activating Nrf2, resulting in the reduction of glutamate availability for tricarboxylic acid cycle. Ultimately, myofibroblast activation was prevented by impairing cell proliferation. Innovation and Conclusion: In addition to the regulation of redox homeostasis, our work showed that Tan-IIA activated Nrf2/GSH signaling pathway to limit glutaminolysis in myofibroblast proliferation, which provided further insight into the critical function of Nrf2 in PF.