Articles: neuropathic-pain.
-
Chronic pain continues to present a large burden to the US healthcare system. Neuropathic pain, a common class of chronic pain, remains particularly difficult to treat despite extensive research efforts. Current pharmacologic regimens exert limited efficacy and wide, potentially dangerous side effect profiles. This review provides a comprehensive, preclinical evaluation of the literature regarding the role of flavonoids in the treatment of neuropathic pain. ⋯ Flavonoids are naturally occurring compounds, found in plants and various dietary sources, which may have potential benefit in neuropathic pain. Numerous animal-model studies have demonstrated this benefit, including reversal of hyperalgesia and allodynia. Flavonoids have also exhibited an anti-inflammatory effect relevant to neuropathic pain, as evidenced by the reduction in multiple pro-inflammatory mediators, such as TNF-α, NF-κB, IL-1β, and IL-6. Flavonoids represent a potentially new treatment modality for neuropathic pain in preclinical models, though human clinical evidence is yet to be explored at this time.
-
Molecular neurobiology · May 2021
BDNF Participates in Chronic Constriction Injury-Induced Neuropathic Pain via Transcriptionally Activating P2X7 in Primary Sensory Neurons.
Neuropathic pain, resulting from the pathological changes of the somatosensory nervous system, remains a severe public health problem worldwide. The effect of treatment targeting neuropathic pain is very limited, as the underlying mechanism of neuropathic pain is largely unknown. In this study, we demonstrated that the expression level of brain-derived neurotrophic factor (BDNF) was remarkably and time-dependently increased in dorsal root ganglion (DRG) neurons. ⋯ The overexpression of BDNF also increased P2X7 expression in DRG neurons, which was validated in in vivo and in vitro experiments. BDNF may exert crucial effect via transcriptionally activating the P2X7 gene in primary sensory neurons, since P2X7 acts as a role of endogenous agitator in neuropathic pain and BDNF largely co-expresses with P2X7 in DRG neurons. Therefore, our data provide evidence that BDNF may be a promising therapeutic target for neuropathic pain.
-
Neuron-glial-related cell adhesion molecule (NrCAM) is a neuronal cell adhesion molecule that has been shown to be involved in several cellular processes in the peripheral nervous system, including neurite outgrowth. We recently reported that alternative splicing of Nrcam mRNA at exon 10 in the dorsal root ganglion (DRG) contributes to the peripheral mechanism of neuropathic pain. Specially, Nrcam antisense oligonucleotides (ASO) targeting Nrcam exon 10, attenuated neuropathic pain hypersensitivities in mice. ⋯ By immunostaining DRG neurons with different DRG markers, Nrcam ASO significantly reduced neurite lengths in neurofilament 200-, calcitonin gene-related peptide and isolectin B4-positive neurons in primary DRG neuronal culture. Moreover, Nrcam ASO activates epidermal growth factor receptor, which may mediate the effect of Nrcam ASO on neurite outgrowth of cultured DRG neurons. These results provide evidence that Nrcam ASO suppresses neurite outgrowth in DRG neurons by regulating alternative splicing of Nrcam gene at exon 10 and activation of epidermal growth factor receptor signaling, indicating the differential roles of NrCAM variants/isoforms in neurite outgrowth.
-
Journal of neurosurgery · May 2021
Covering the proximal nerve stump with chondroitin sulfate proteoglycans prevents traumatic painful neuroma formation by blocking axon regeneration after neurotomy in Sprague Dawley rats.
Neuropathic pain caused by traumatic neuromas is an extremely intractable clinical problem. Disorderly scar tissue accumulation and irregular and immature axon regeneration around the injury site mainly contribute to traumatic painful neuroma formation. Therefore, successfully preventing traumatic painful neuroma formation requires the effective inhibition of irregular axon regeneration and disorderly accumulation of scar tissue. Considering that chondroitin sulfate proteoglycans (CSPGs) can act on the growth cone and effectively inhibit axon regeneration, the authors designed and manufactured a CSPG-gelatin blocker to regulate the CSPGs' spatial distribution artificially and applied it in a rat model after sciatic nerve neurectomy to evaluate its effects in preventing traumatic painful neuroma formation. ⋯ The authors found that CSPGs loaded in a gelatin blocker can prevent traumatic neuroma formation and effectively relieve pain symptoms after sciatic nerve neurotomy by blocking irregular axon regeneration and disorderly collagenous fiber accumulation in the proximal nerve stump. These results indicate that covering the proximal nerve stump with CSPGs may be a new and promising strategy to prevent traumatic painful neuroma formation in the clinical setting.
-
Physical activity (PA) is a modifiable health behaviour in patients with colorectal cancer (CRC). Knowing the possible predictors of PA will contribute to producing physical and psychological benefits for CRC patients. ⋯ This study suggests that quality of life, knee extensor muscle strength, and fatigue have the greatest influence on PA in patients with CRC.