Articles: neuropathic-pain.
-
Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to the genesis of neuropathic pain. SYNCRIP, an RNA-binding protein, is critical for the stabilisation of gene expression. Whether SYNCRIP participates in nerve injury-induced alterations in DRG gene expression and nociceptive hypersensitivity is unknown. ⋯ SYNCRIP contributes to the induction and maintenance of neuropathic pain likely through stabilising expression of CCR2 in injured DRG. SYNCRIP may be a potential target for treating this disorder.
-
Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Microglia display similar morphological responses in the spinal cord after peripheral nerve injury (PNI). ⋯ After PNI, we identify an early proliferative transcriptional event across models that precedes the upregulation of histological markers of microglial activation. However, we found no proliferative transcriptional response associated with opioid-induced microglial activation, consistent with histological data, indicating that the number of microglia remains stable during morphine treatment, whereas their morphological response differs from PNI models. Collectively, these results establish the diversity of pain-associated microglial transcriptomic responses and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other central nervous system pathologies.
-
The current analgesics often prevent patients from getting effective treatment due to their adverse effects. Cannabidiol (CBD) is well tolerated, has few side effects and has been extensively investigated in analgesia. However, its oral bioavailability is extremely low. In order to solve this problem, we developed the cannabidiol nanocrystals (CBD-NC) in the earlier stage. ⋯ The absolute bioavailability of the CBD-NC intramuscular injection formulation can reach 203.31%, which can solve the problem of low oral bioavailability. This research evaluated the therapeutic effect of CBD-NC on NP associated with the SNI model for the first time. All available date showed that whatever the analgesic or neuroprotective effect of CBD-NC, it was significantly better than that of CBD oil sol., which was consistent with the results of the pharmacokinetic. This research supports the initiation of more trials testing the efficacy of CBD-NC for treating NP.
-
Paclitaxel-induced peripheral neurotoxicity (PIPN) is a potentially dose-limiting side effect in anticancer chemotherapy. Several animal models of PIPN exist, but their results are sometimes difficult to be translated into the clinical setting. We compared 2 widely used PIPN models characterized by marked differences in their methodologies. ⋯ Study 1 showed significant and consistent behavioral, neurophysiological, pathological, and serological changes induced by paclitaxel administration at the end of treatment, and most of these changes were still evident in the follow-up period. By contrast, study 2 evidenced only a transient small fiber neuropathy, associated with neuropathic pain. Our comparative study clearly distinguished a PIPN model recapitulating all the clinical features of the human condition and a model showing only small fiber neuropathy with neuropathic pain induced by paclitaxel.
-
Randomized Controlled Trial
Topically applied novel TRPV1 receptor antagonist, ACD440 Gel, reduces evoked pain in healthy volunteers, a randomized, double-blind, placebo-controlled, crossover study.
The TRPV1 receptor is a key molecule in pain generation. Previous development of oral TRPV1-antagonists was halted due to systemic heat insensitivity and body temperature alterations. The present Phase 1b study investigated the efficacy, safety and plasma exposure of a topically administered TRPV1-antagonist (ACD440 Gel) in healthy subjects. ⋯ This study demonstrates that the topical administration of a TRPV1-antagonist, ACD440 Gel, has potential as a new treatment for painful conditions affecting the skin, such as chronic peripheral neuropathic pain, without any local or systemic side effects.