Articles: neuropathic-pain.
-
Lots of studies have demonstrated that anterior cingulate cortex plays important roles in the pain perception and pain modulation. The present study explored the role of mu-opioid receptor in nociceptive modulation in anterior cingulate cortex of rats with neuropathic pain. Neuropathic pain model was set up by chronic constriction injury of the left sciatic nerve of rats. ⋯ To further confirm the role of mu-opioid receptor in morphine-induced antinociception in anterior cingulate cortex, normal rats were received intra-anterior cingulate cortex administration of small interfering RNA targeting mu-opioid receptor and it was found that there was a down-regulation in mu-opioid receptor messenger RNA levels, as well as a down-regulation in mu-opioid receptor expression in anterior cingulate cortex tested by real-time polymerase chain reaction and western blotting. Furthermore, the morphine-induced antinociceptive effect decreased significantly in rats with small interfering RNA targeting mu-opioid receptor, which indicated that knockdown mu-opioid receptor in anterior cingulate cortex could also attenuate morphine-induced antinociceptive effect. These results strongly suggest that mu-opioid receptor plays a significant role in nociceptive modulation in anterior cingulate cortex of rats.
-
To compare the characteristics of neuropathic pain in neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS). ⋯ The severity of neuropathic pain and the pain-related interference in daily life were greater in NMOSD patients than in MS patients. Individualized analgesic management should be considered based on a comprehensive understanding of neuropathic pain in these patients.
-
The central medial nucleus (CM), a prominent cell group of the intralaminar nuclei (ILN) of the thalamus, and the ventrolateral periaqueductal gray matter (vlPAG) are two major components of the medial pain system. Whether vlPAG and CM are input sources of nociceptive information to the basolateral amygdala (BLA) and whether they are involved in neuropathic pain regulation remain unclear. Clarifying the hierarchical organization of these subcortical nuclei (vlPAG, CM, and BLA) can enhance our understanding on the neural circuits for pain regulation. ⋯ Morphological studies revealed that: (1) the CM received afferents from vlPAG and sent efferents to BLA, indicating that an indirect vlPAG-CM-BLA pathway exists; (2) such CM-BLA projections were primarily excitatory glutamatergic neurons as revealed by fluorescence in situ hybridization; (3) the fibers originated from the CM-formed close contacts with both excitatory and inhibitory neurons in the BLA; and (4) BLA-projecting CM neurons expressed Fos induced by SNI and formed close contacts with fibers from vlPAG, suggesting that the vlPAG-CM-BLA indirect pathway was activated in neuropathic pain conditions. Finally, the vlPAG-CM-BLA indirect pathway was further confirmed using anterograde and monosynaptic virus tracing investigation. In summary, our present results provide behavioral and morphological evidence that the indirect vlPAG-CM-BLA pathway might be a novel pain pathway involved in neuropathic pain regulation.
-
Indian J Palliat Care · Jan 2020
Case ReportsLumbar Erector Spine Plane Block for Pain Management in Postherpetic Neuralgia in a Patient with Chronic Lymphocytic Leukemia.
Postherpetic neuralgia (PHN) refers to the chronic neuropathic pain that persists beyond the initial varicella-zoster rash. Patients with chronic lymphocytic leukemia (CLL) are susceptible to infections because of decreased immunity. Various treatment strategies including pharmacological, nonpharmacological, and interventional techniques have been described in the literature. We report the successful management of PHN with lumbar erector spinae plane block in a patient of CLL.
-
Journal of neurosurgery · Jan 2020
Neurochemical effects of motor cortex stimulation in the periaqueductal gray during neuropathic pain.
Motor cortex stimulation (MCS) is a neurosurgical technique used to treat patients with refractory neuropathic pain syndromes. MCS activates the periaqueductal gray (PAG) matter, which is one of the major centers of the descending pain inhibitory system. However, the neurochemical mechanisms in the PAG that underlie the analgesic effect of MCS have not yet been described. The main goal of this study was to investigate the neurochemical mechanisms involved in the analgesic effect induced by MCS in neuropathic pain. Specifically, we investigated the release of γ-aminobutyric acid (GABA), glycine, and glutamate in the PAG and performed pharmacological antagonism experiments to validate of our findings. ⋯ These results suggest that the neurotransmitters glycine and GABA released in the PAG may be involved in the analgesia induced by cortical stimulation in animals with neuropathic pain. Further investigation of the mechanisms involved in MCS-induced analgesia may contribute to clinical improvements for the treatment of persistent neuropathic pain syndromes.