Articles: neuropathic-pain.
-
Antimicrotubulin chemotherapeutic agents, including plant-derived vincaalkaloids such as vincristine, can cause peripheral neuropathic pain. Exogenously activated heme oxygenase 1 (HO-1) is a potential therapy for chemotherapy-induced neuroinflammation. In this study, we investigated a role for Nrf2/HO-1/CO in mediating vincristine-induced neuroinflammation by inhibiting connexin 43 (Cx43) production in the spinal cord following the intrathecal application of the HO-1 inducer protoporphyrin IX cobalt chloride (CoPP) or inhibitor protoporphyrin IX zinc (ZnPP), and we analyzed the underlying mechanisms by which levo-corydalmine (l-CDL, a tetrahydroprotoberberine) attenuates vincristine-induced pain. ⋯ Furthermore, l-CDL had no effect on Cx43 following the silencing of the HO-1 gene. Taken together, our findings reveal a novel mechanism by which Nrf2/HO-1/CO mediates Cx43 expression in vincristine-induced neuropathic pain. In addition, the present findings suggest that l-CDL likely protects against nerve damage and attenuates vincristine-induced neuroinflammation by upregulating Nrf2/HO-1/CO to inhibit Cx43 expression.
-
Journal of pain research · Jan 2020
Cancer Pain Management: An Italian Delphi Survey from the Rational Use of Analgesics (RUA) Group.
In patients with cancer, the prevalence of pain is high, and pain management is often challenging despite the wide availability of drugs and guidelines. ⋯ Results from the RUA project showed that Italian palliative care specialists had a particular interest in items related to pain challenges, in addition to the evaluation and control of pain associated with cancer. However, some discrepancies between current guidelines and clinical practice were observed.
-
Previous studies have shown that oral administration of the NMDAR modulator NYX-2925 alleviates pain in several animal models of neuropathic pain and this appears to be through mPFC, but not spinal, mediated mechanisms. While much is known about the impact of neuropathic pain on NMDAR-mediated signaling in the spinal cord, limited studies have focused on the brain. In the current study, we assess signaling changes associated with NMDAR-mediated plasticity in the mPFC and the impact of NYX-2925 administration on the normalization of these signaling changes. ⋯ The analgesic effect of NYX-2925 appears dependent on this restoration of Src activation in the mPFC, as co-administering Src activation inhibitors prevented the NYX-2925 analgesic effect. Overall, these data suggest that NMDAR-mediated signaling plays a key role in neuropathic pain, albeit in different directions in the spinal cord vs. the mPFC. Furthermore, the analgesic effect of NYX-2925 appears to involve a restoration of NMDAR-mediated signaling in the mPFC.
-
This study set out to investigate the effect of massage on the Toll-like receptor 4 (TLR4) signalling pathway in the dorsal root ganglia of rats that had undergone spinal nerve ligation (SNL), with the hypothesis that massage could be used as an analgesic. Forty female SD rats were randomly divided into 5 groups: the control group, sham-operated group, model group, sham massage group, and massage group. There were 8 rats in each group. ⋯ The PWTL and PWMT of SNL rats were decreased, while these parameters were elevated after massage. SNL rats showed higher levels of TLR4, IRAK1, TRAF6, IL-6, and TNF-α, and massage effectively lowered the expression levels of these molecules. Inhibiting activation of the TLR4 signalling pathway, which can reduce the release of inflammatory factors, may be one mechanism by which massage treats neuropathic pain.
-
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. ⋯ BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.