Articles: neuropathic-pain.
-
Frontiers in pharmacology · Jan 2018
Selective Blockade of HCN1/HCN2 Channels as a Potential Pharmacological Strategy Against Pain.
A prominent role of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels has been suggested based on their expression and (dys)function in dorsal root ganglion (DRG) neurons, being likely involved in peripheral nociception. Using HCN blockers as antinociceptive drugs is prevented by the widespread distribution of these channels. However, tissue-specific expression of HCN isoforms varies significantly, HCN1 and HCN2 being considered as major players in DRG excitability. ⋯ MEL55A was able to relieve chemotherapy-induced neuropathic pain. In conclusion, selective blockade of HCN1/HCN2 channels, over HCN4 isoform, was able to modulate electrophysiological properties of DRG neurons similarly to that reported for classical Ih blockers, ivabradine, resulting in a pain-relieving activity. The availability of small molecules with selectivity toward HCN channel isoforms involved in nociception might represent a safe and effective strategy against chronic pain.
-
Diabetic peripheral neuropathy is a major debilitating late complication of diabetes, which significantly reduces the quality of life in patients. Diabetic peripheral neuropathy is associated with a wide spectrum of sensory abnormalities, where in loss of sensation or hypoalgesia to applied external stimuli is paradoxically accompanied by debilitating tonic spontaneous pain. In numerous studies on animal models of diabetic peripheral neuropathy, behavioural measurements have been largely confined to analysis of evoked withdrawal to mechanical and thermal stimuli applied to dermatomes, whereas spontaneous, on-going pain has not been widely studied. ⋯ Neither early hypersensitivity nor late hypoalgesia were associated with markers of cellular stress in the dorsal root ganglia. Whereas significant neutrophil infiltration was observed in the dorsal root ganglia over both early and late stages post-Streptozotocin, T-cell infiltration in the dorsal root ganglia was prominent at late stages post-Streptozotocin. Thus, longitudinal analyses reveal that similar to patients with chronic diabetic peripheral neuropathy, mice show tonic pain despite sensory loss after several months in the Streptozotocin model, which is accompanied by neuroimmune interactions in the dorsal root ganglia.
-
Front Cell Neurosci · Jan 2018
Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex.
The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. ⋯ Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.
-
Front Cell Neurosci · Jan 2018
Fractalkine/CX3CR1 Contributes to Endometriosis-Induced Neuropathic Pain and Mechanical Hypersensitivity in Rats.
Pain is the most severe and common symptom of endometriosis. Its underlying pathogenetic mechanism is poorly understood. Nerve sensitization is a particular research challenge, due to the limitations of general endometriosis models and sampling nerve tissue from patients. ⋯ Intrathecal administration of FKN-neutralizing antibody not only reversed the established mechanical hyperalgesia and allodynia, but also inhibited the expression of CX3CR1/pp38-MAPK in activated microglia, which was essential for the persistence of central sensitization. We concluded that the FKN/CX3CR1 signaling pathway might be one of the mechanisms of peripheral hyperalgesia in endometriosis, which requires further studies. Spinal FKN is important for the development and maintenance of central sensitization in endometriosis, and it may further serve as a novel therapeutic target to relieve persistent pain associated with endometriosis.
-
Chemotherapy drugs such as oxaliplatin can increase nociceptive neuron excitability to result in neuropathic pain in orofacial and other regions in patients following chemotherapy. However, mechanisms underlying chemotherapy-induced increases of nociceptive neuron excitability are not fully understood. Kv4.3 channels are voltage-gated K+ channels mediating A-type K+ (IA) currents to control neuronal excitability. ⋯ The amplitudes of IA currents were significantly reduced in these nociceptive-like V2 TG neurons of oxaliplatin-treated group. Furthermore, we found that the excitability of nociceptive-like V2 TG neurons was significantly higher in the oxaliplatin-treated group than in the control group. These findings raise a possibility that down-regulation of Kv4.3 channels and IA currents in nociceptive V2 TG neurons is an underlying mechanism of oxaliplatin-induced orofacial neuropathic pain.