Articles: neuropathic-pain.
-
Mu opioid receptor (MOR) plays a crucial role in mediating analgesic effects of opioids and is closely associated with the pathologies of neuropathic pain. Previous studies have reported that peripheral nerve injury downregulates MOR expression, but the epigenetic mechanisms remain unknown. ⋯ This study demonstrates that an increase of DNMT3a expression and MOR methylation epigenetically play an important role in neuropathic pain. Targeting DNMT3a to the promoter of MOR gene by DNMT inhibitor may be a promising approach to the development of new neuropathic pain therapy.
-
Front Behav Neurosci · Jan 2017
Cognitive Impairment in Patients with Chronic Neuropathic or Radicular Pain: An Interaction of Pain and Age.
A growing body of empirical research has confirmed an association between chronic pain and cognitive dysfunction. The aim of the present study was to determine whether cognitive function is affected in patients with a diagnosis of chronic neuropathic or radicular pain relative to healthy control participants matched by age, gender, and years of education. We also examined the interaction of pain with age in terms of cognitive performance. ⋯ Chronic pain did not appear to predict performance on the Wisconsin Card Sorting Task, which was used a measure of executive function. This study supports and extends previous research indicating that chronic pain is associated with impaired memory and attention. Perspective: Compared to healthy control participants, patients with chronic neuropathic or radicular pain showed cognitive deficits which were most pronounced in older pain patients.
-
Journal of pain research · Jan 2017
Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation.
Initial peripheral/central nerve injuries, such as chronic constriction injury (CCI)/spinal cord injury, are often compounded by secondary mechanisms, including inflammation and oxidative stress, which may lead to chronic neuropathic pain characterized by hyperalgesia or allodynia. On the other hand, exercise as a behavioral and non-pharmacological treatment has been shown to alleviate chronic neuropathic pain. Therefore, this study was conducted to examine whether or not exercise reduces neuropathic pain through modifying oxidative stress and inflammation in chronic constriction injury of the sciatic nerve. ⋯ Post CCI-exercise but not pre CCI-exercise reduces CCI-induced neuropathic pain. One of the possible involved mechanisms is increasing the total antioxidant capacity and reducing the amount of TNF-α.
-
Frontiers in pharmacology · Jan 2017
Rolipram, a Selective Phosphodiesterase 4 Inhibitor, Ameliorates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain through Inhibition of Inflammatory Cytokines in the Dorsal Root Ganglion.
Chemotherapy-induced neuropathic pain is a significant side effect of chemotherapeutic agents and is the most common reason for stopping chemotherapy. The aim of the present study was to find the major site and mechanisms of action by which rolipram, a selective phosphodiesterase-4 inhibitor, alleviates paclitaxel-induced neuropathic pain. Chemotherapy-induced neuropathic pain was induced in adult male Sprague-Dawley rats by intraperitoneal injection of paclitaxel on four alternate days. ⋯ These results suggest that the major site of action of rolipram on paclitaxel-induced neuropathic pain in rats was the dorsal root ganglion. Rolipram decreased the expression of inflammatory cytokines in the dorsal root ganglion. Thus, phosphodiesterase-4 inhibitors may ameliorate chemotherapy-induced neuropathic pain by decreasing expression of inflammatory cytokines in the dorsal root ganglion.
-
Accumulating evidence has demonstrated that epigenetic modification-mediated changes in pain-related gene expressions play an important role in the development and maintenance of neuropathic pain. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is involved in the development of chronic pain. Moreover, SIRT1 may be a novel therapeutic target for the prevention of type 2 diabetes mellitus (T2DM). ⋯ Concurrently, increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions were reversed by SIRT1 activation. In addition, knockdown of SIRT1 by Ad-SIRT1-shRNA induced pain behaviors and spinal neuronal activation in normal rats, which was accompanied by the increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions. Therefore, we concluded that SIRT1-mediated epigenetic regulation of mGluR1/5 expressions was involved in the development of neuropathic pain in type 2 diabetic rats.