Articles: neuropathic-pain.
-
Recent studies have indicated an important role of chemokines such as CCL2 in the development of chronic pain. However, the distinct roles of different chemokines in the development and maintenance of neuropathic pain and in their interactions with neurons have not been clearly elucidated. We found that spinal nerve ligation (SNL) not only induced persistent neuropathic pain symptoms, including mechanical allodynia and heat hyperalgesia, but also produced sustained CXCL1 upregulation in the spinal cord. ⋯ SB225002 also attenuated SNL-induced pain hypersensitivity. Collectively, our results have demonstrated a novel form of chemokine-mediated glial-neuronal interaction in the spinal cord that can drive neuropathic pain. Inhibition of the CXCL1-CXCR2 signaling may offer a new therapy for neuropathic pain management.
-
Growing evidence suggests that leukocyte extravasation is initiated by the interaction of selectins with their ligands; as well as an essential role for P-selectin in the initial recruitment of inflammatory cells to sites of inflammation. In this study, P-selectin-deficient (P-sel-/-) mice were used to test the hypothesis that lack of P-selectin would attenuate the recruitment of inflammatory cells to the site of inflammation, thereby modulating pain in a murine chronic neuropathic pain model. Nociceptive sensitization and the microenvironment of the peripheral injury site were studied in wild-type (P-sel+/+) and P-selectin-deficient (P-sel-/-) mice after partial sciatic nerve ligation (PSNL). ⋯ In addition, endogenous opioid peptides mRNA was significantly lower in P-sel-/- mice compared with P-sel +/+ mice. The current results demonstrated that the absence of P-selectin in mice leads to an altered microenvironment that attenuated behavioral hypersensitivity. The specific role of P-selectin could have been a result of decreased neutrophils, as well as the accumulation of macrophages at the site of injury, which may subsequently modulate the inflammatory cytokine expression and impact behavioral hypersensitivity within the injured nerve.
-
Randomized Controlled Trial
Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: A randomized controlled trial.
Neuropathic pain remains one of the most difficult consequences of spinal cord injury (SCI) to manage. It is a major cause of suffering and adds to the physical, emotional, and societal impact of the injury. Despite the use of the best available treatments, two thirds of people experiencing neuropathic pain after SCI do not achieve satisfactory pain relief. ⋯ A similar lack of effect was also seen after sham treatment. Because the injury duration in this study was significantly greater than that of previous investigations, it is possible that tDCS is an effective analgesic only in individuals with relatively recent injuries and pain. Future investigations comparing a range of injury durations are required if we are to determine whether this is indeed the case.
-
Nerve injury sometimes leads to chronic neuropathic pain associated with neuroinflammation in the nervous system. In the case of chronic neuropathic pain, the inflammatory and algesic mediators become predominant and result in pain hypersensitivity following nervous system damage. It is well known that urinary trypsin inhibitor (ulinastatin, UTI) has an anti-inflammatory activity. Recently, the neuroprotective action of UTI on the nervous system after ischemic injury has been reported. Thus, we evaluated the neuroprotective effect of ulinastatin in a rat model of neuropathic pain. ⋯ Ulinastatin, which was administered for 3 days after SNL, increased the paw withdrawal threshold and it could have a neuroprotective effect in the rat model of neuropathic pain.
-
An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist. ⋯ JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology.