Articles: neuropathic-pain.
-
Pharmacol. Biochem. Behav. · Oct 2013
Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice.
The mammalian target of rapamycin (mTOR) is known to regulate cell growth, and it also participates in pain transmission as has been recently verified in inflammatory and neuropathic pain models. The targeting of mTOR represents a new strategy for the control of chronic pain. In the present study, we investigated the effect of mTOR in the expression of PSD95 and NR2B-PSD95 or GluA2-PSD95 interaction ratio in a chronic constriction injury (CCI) mice model. ⋯ These data suggest that the mTOR pathway is activated in the spinal dorsal horn in CCI-induced neuropathic pain, and the intrathecal injection of rapamycin can reduce mechanical allodynia. Our findings indicate that spinal mTOR is an important component of CCI-induced neuropathic pain, and mTOR may be a potential target for chronic pain therapy.
-
The effect of long-term administration of imipramine, a tricyclic antidepressant, on the phosphorylation status of cyclic adenosine monophosphate-responsive element-binding protein (CREB), mitogen-activated protein kinase family members, and phospholipase γ-1 (PLCγ-1) was investigated in the dorsal horn of the spinal cord following peripheral nerve lesion. Nerve injury induced an ipsilateral long-lasting increased phosphorylation of CREB and PLCγ-1 but not extracellular signal-regulated kinase (ERK1,2), p38, and c-Jun N-terminal kinase. Daily administration of imipramine (5, 10, or 30 mg/kg) for 21 days progressively reduced both tactile-induced neuropathic pain hypersensitivity and thermal hyperalgesia. After withdrawal of treatment, the antinociceptive effect of imipramine was gradually abolished but still remained for at least 3 weeks. Conversely, no analgesic effect was observed with short-term imipramine treatment. Moreover, imipramine therapy reversed nerve injury-induced CREB and PLCγ-1 phosphorylation but had no effect on ERK1,2, p38, and c-Jun N-terminal kinase activity. These results indicate that long-term administration of imipramine may prevent some of the harmful changes in the spinal cord dorsal horn following nerve injury. However, imipramine analgesic effect takes time to develop and mature, which might explain in part why the clinical analgesic effect of tricyclic antidepressants develops with a delay after the beginning of treatment. Our data also provide evidence that prolonged imipramine treatment may induce antinociception in neuropathic pain conditions because of its action on the PLCγ-1/CREB-signaling pathway. ⋯ This article demonstrates that long-term treatment with imipramine reverses some of the marked effects induced by peripheral nerve injury in the spinal dorsal horn that contribute to long-term maintenance of sensory disorder, providing a new view to the mechanisms of action of these drugs.
-
Chirurgie de la main · Oct 2013
[Autologous fat grafting in the surgical management of painful scar: preliminary results].
The purpose of this study was to report our experience about the effectiveness of autologous fat injections in the management of painful scars. Between 2010 and 2012, all patients with persistent incisional pain despite a well-conduced 6 months medical treatment received an autologous fat graft according to the technique originally described by Coleman. Results interpretation was based on pain improvement thanks to a Visual Analogic Scale (VAS), postoperative patient satisfaction, reduction on analgesics intake and quality of life improvement. ⋯ The mean reduction of VAS was 3.5 points. We did not observe any complication. Autologous fat grafting is an innovative therapeutic approach and appears to be an attractive concept in the management of scar neuromas resistant to drug treatment, by providing an easy effective and safe surgical treatment.
-
The development of chronic pain after amputations is not an uncommon event. In some cases the most disabling problem is represented by the symptom called dynamic mechanical allodynia, characterized by the painful sensation evoked by gently stroking the skin. Despite the growing interest in understanding pain mechanisms, little is known about the mechanism sustaining this peculiar type of pain. ⋯ Independently from the uncertain cause of the epidermal hyperinnervation, in this patient we tried to reduce the elevated number of epidermal nerve fibres by treating the skin with topical capsaicin (0.075%) three times a day, and obtained a persistent pain relief. In conclusion, neurodiagnostic skin biopsy might represent an useful tool for detecting derangements of epidermal innervation in patients with dynamic mechanical allodynia and can help to select an individually tailored therapeutic strategy in such difficult clinical conditions. Further studies are needed to clarify this issue and try to gain better understanding of chronic pain mechanisms in patients who underwent finger amputation.
-
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. ⋯ The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.