Articles: neuralgia.
-
Fibromyalgia is a prevalent pain condition that is associated with cognitive impairments including in attention, memory, and executive processing. It has been proposed that fibromyalgia may be caused by altered central pain processing characterised by a loss of endogenous pain modulation. We tested whether attentional analgesia, where cognitive engagement diminishes pain percept, was attenuated in patients with fibromyalgia (n = 20) compared with matched healthy controls (n = 20). ⋯ Functional magnetic resonance imaging analysis showed similar patterns of activation in the main effects of pain and attention in the brain and brainstem (with the sole exceptions of increased activation in the control group in the frontopolar cortex and the ipsilateral locus coeruleus). The attentional analgesic effect correlated with activity in the periaqueductal gray and rostral ventromedial medulla. These findings indicate that patients with fibromyalgia can engage the descending pain modulatory system if the attentional task and noxious stimulus intensity are appropriately titrated.
-
Since its adoption as a treatment for neuropathic pain in the 1960s, radiofrequency ablation (RFA) has continued to gain popularity for the management of various pain etiologies. Although RFA is considered to be a safe procedure, post-neurotomy neuritis (PNN), a neuropathic-type pain, is one of the most common side effects. Due to the increasing recognition of PNN, some providers have attempted to mitigate the risk of PNN by injecting local corticosteroids at the site of RFA following the procedure. Recent studies have generally concluded that corticosteroids do not protect against the development of PNN, however, they have been limited by their retrospective study designs and the low incidence of PNN. ⋯ Overall, our study is in agreement with prior studies that RFA is effective for the treatment of facet and osteoarthritic knee pain and that the incidence of PNN is likely small.
-
The effect of spinal cord stimulation (SCS) using differential target multiplexed programming (DTMP) on proteins involved in the regulation of ion transport in spinal cord (SC) tissue of an animal model of neuropathic pain was evaluated in comparison to low rate (LR) SCS. Rats subjected to the spared nerve injury model (SNI) and implanted with a SCS lead were assigned to DTMP or LR and stimulated for 48 h. A No-SCS group received no stimulation, and a Sham group received no SNI or stimulation. ⋯ DTMP also upregulated postsynaptic proteins involved with elevated intracellular Cl-, while modulating proteins, expressed by astrocytes, that regulate postsynaptic Cl- inhibition. DTMP downregulated K+ regulatory proteins affected by SNI that affect neuronal depolarization, and upregulated proteins that are associated with a decrease of intracellular neuronal K+ and astrocyte uptake of extracellular K+. DTMP treatment modulated the expression of proteins with the potential to facilitate a reversal of dysregulation of ion transport and signaling associated with a model of neuropathic pain.
-
T lymphocytes are increasingly implicated in pain signaling. A subset of T lymphocytes, termed TChAT, express the rate-limiting enzyme for acetylcholine (ACh) production, choline acetyltransferase (ChAT), and mediate numerous physiological functions. Given that cholinergic signaling has long been known to modulate pain processing and is the basis for several analgesics used clinically, we asked whether TChAT could be the intersection between T lymphocyte and cholinergic mediation of pain signaling. ⋯ Our experiments demonstrate that cholinergic signaling initiated by T lymphocytes neither dampens nor exacerbates the expression of mechanical or thermal sensitivity in neuropathic mice. Thus, while both cholinergic signaling and T lymphocytes have established roles in modulating pain phenotypes, it is not cholinergic signaling initiated by T lymphocytes that drive this. Our findings will help to narrow in on which aspects of T-cell modulation may prove useful as therapies.
-
N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. ⋯ Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.