Articles: neuralgia.
-
Journal of neurochemistry · Mar 2020
Topical combination of meldonium and N-acetyl cysteine relieves allodynia in rat models of CRPS-1 and peripheral neuropathic pain by enhancing NO-mediated tissue oxygenation.
Local microvascular dysfunction and consequent tissue ischemia/hypoxia contribute to the symptoms of complex regional pain syndrome (CRPS) and peripheral neuropathic pain. As nitric oxide (NO) is a key regulator of microvascular blood flow, compounds that increase it are potentially therapeutic for these pain conditions. This led us to hypothesize that the topical administration of drugs that modulate local tissue NO levels can alleviate the pain of CRPS and peripheral neuropathic pain. ⋯ To ascertain the role played by changes in local tissue NO, we performed a quantification of plantar muscle NO in CPIP rats after hind paw topical treatment with meldonium-NAC and revealed significantly increased plantar muscle NO levels in drug-treated rats. The drug combination also reversed the reduction in tissue oxygenation normally observed in CPIP hind paws. In addition to introducing a novel topical treatment for mechanical allodynia in CRPS and peripheral neuropathic pain, this work showcases the analgesic potential of locally targeting microvascular dysfunction and tissue ischemia/hypoxia in these conditions, with emphasis on the role of NO.
-
Approximately one of three people with diabetes is affected by distal symmetric sensorimotor polyneuropathy (DSPN) which is associated with marked impairment in quality of life due to partly excruciating neuropathic pain on the one hand and painless foot ulcers on the other hand. The prevalence of painful DSPN may reach up to one quarter of patients with diabetes, while DSPN may be asymptomatic in up to half of the patients affected. ⋯ The management of DSPN includes three cornerstones: (1) lifestyle modification, causal treatment aimed at near-normoglycemia and multifactorial cardiovascular risk intervention, (2) pathogenesis-derived treatment and (3) symptomatic treatment of neuropathic pain. Multimodal pain treatment should not only aim at pain relief, but also allow for improvement in quality of sleep, mobility, and general quality of life.
-
Curr Pain Headache Rep · Feb 2020
ReviewTranscutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications.
Transcutaneous electrical nerve stimulation (TENS) is widely used as a non-pharmacological approach for pain relief in a variety of clinical conditions. This manuscript aimed to review the basic mechanisms and clinical applications regarding the use of TENS for alleviating the peripheral (PNP) and central neuropathic pain (CNP). ⋯ Basic studies on animal models showed that TENS could alleviate pain by modulating neurotransmitters and receptors in the stimulation site and its upper levels, including the spinal cord, brainstem, and brain. Besides, many clinical studies have investigated the efficacy of TENS in patients with CNP (caused by spinal cord injury, stroke, or multiple sclerosis) and PNP (induced by diabetes, cancer, or herpes zoster). Most clinical trials have demonstrated the efficacy of TENS in attenuating neuropathic pain and suggested that appropriate stimulation parameters (e.g., stimulation frequency and intensity) were critical to improving the analgesic effects of TENS. However, there are some conflicting findings related to the efficacy of TENS in relieving neuropathic pain. With optimized stimulation parameters, TENS would be effective in attenuating neuropathic pain. To obtain sufficient evidence to support the use of TENS in the clinic, researchers recommended performing multicenter clinical trials with optimized TENS protocols for the treatment of various CNP and PNP.
-
Neuroscience letters · Feb 2020
A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals.
Experimental treatments for treating neuropathic pain include transcranial magnetic stimulation (TMS) and invasive electric motor cortex stimulation (iMCS) of the primary motor cortex (M1). Mechanisms of action of both methods, however, remain largely elusive. Within this paper, we focus on animal-based experiments in order to investigate the biological mechanisms that are involved in alleviating pain by use of TMS and/or iMCS. ⋯ Furthermore, structural and functional changes within the thalamus, striatum, periaqueductal grey, rostral ventromedial medulla and dorsal horn were reported to occur. Although widespread, all areas in which structural and functional changes occurred after TMS and iMCS have been found to be interconnected anatomically. This could provide a rationale for future investigations of treating neuropathic pain by use of neuromodulation.