Articles: neuralgia.
-
cGMP-dependent kinase-I (cGKI) is known to regulate spinal pain processing. This enzyme consists of two isoforms (cGKIα and cGKIβ) that show distinct substrate specificity and tissue distribution. It has long been believed that the α isoform is exclusively expressed in the adult dorsal root ganglion. ⋯ In contrast, cGKIβ expression was upregulated in both the injured and uninjured dorsal root ganglions. Also, injury-induced cGKIβ upregulation was found to occur in small-to-medium-diameter dorsal root ganglion neurons. These data thus demonstrate the existence of two differently distributed cGKI isoforms in the dorsal root ganglion, and may provide insight into the cellular and molecular mechanisms of pain.
-
Comparative Study
A comparison of early and late treatments on allodynia and its chronification in experimental neuropathic pain.
Background Surgeries causing nerve injury can result in chronic neuropathic pain, which is clinically managed by using antidepressant or anticonvulsant drugs. Currently, there is a growing interest for investigating preemptive treatments that would prevent this long-term development of neuropathic pain. Our aim was to compare analgesic drugs using two distinct treatment modalities: either treatment onset at surgery time or following a couple of weeks of neuropathic pain. ⋯ When treatments started at day 25 postsurgery, desipramine, duloxetine, and anticonvulsants suppressed the mechanical allodynia. Conclusions Our data show that allodynia measured in experimental neuropathic pain model likely results from a combination of different processes (early vs. late allodynia) that display different sensitivity to treatments. We also propose that early anticonvulsant treatment with gabapentin or carbamazepine may have a prophylactic effect on the chronification of allodynia following nerve injury.
-
Emerging evidence showed that hyperpolarization-activated cation channels (HCN) participate in the development of inflammatory and neuropathic pain. However, the role of HCN2 in oxaliplatin-induced neuropathic pain remains unknown. Here, we found that HCN2 expression was upregulated in a rat model of oxaliplatin-induced neuropathic pain. ⋯ Furthermore, the underlying cellular mechanism demonstrated that ZD7288 administration restrained the enhanced activation of the neuronal calcium-calmodulin-dependent kinase II (CaMKII)/cyclic adenosine monophosphate response element-binding protein cascade after oxaliplatin administration. Moreover, pretreatment of CaMKII inhibitor KN-93 suppressed the nociceptive behaviors, as well as NR2B upregulation induced by overexpression of HCN2. In a word, HCN2 is conducive to oxaliplatin-induced neuropathic pain by activating the neuronal CaMKII/CREB cascade.
-
Anticancer Agents Med Chem · Jan 2018
Oxaliplatin Regulates Chemotherapy Induced Peripheral Neuropathic Pain in the Dorsal Horn and Dorsal Root Ganglion via the Calcineurin/NFAT Pathway.
The aim of this study was to investigate the mechanism of oxaliplatin in the induction of neuropathic pain as a symptom of Chemotherapy-Induced Peripheral Neuropathy (CIPN). ⋯ It was the first time to prove that oxaliplatin-induced neuropathic pain was correlated to the activation of the CaN/NFAT pathway in our rat model. This finding can provide a new direction to explore the mechanism of oxaliplatin-induced neuropathic pain.
-
Journal of pain research · Jan 2018
Botulinum toxin-A for the treatment of neuralgia: a systematic review and meta-analysis.
This meta-analysis was performed to evaluate the efficacy and safety of botulinum toxin-A (BTX-A) for the treatment of neuralgia. ⋯ Based on the current evidence, BTX-A may be an effective and safe option for the treatment of neuralgia. Due to the limited number of patients included in this meta-analysis, more trials are still needed to confirm these results.