Articles: neuralgia.
-
Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. ⋯ Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI.
-
Journal of neurosurgery · Mar 2016
Motor cortex stimulation and neuropathic pain: how does motor cortex stimulation affect pain-signaling pathways?
Neuropathic pain is often severe. Motor cortex stimulation (MCS) is used for alleviating neuropathic pain, but the mechanism of action is still unclear. This study aimed to understand the mechanism of action of MCS by investigating pain-signaling pathways, with the expectation that MCS would regulate both descending and ascending pathways. ⋯ This study demonstrated that MCS effectively attenuated neuropathic pain. MCS modulated ascending and descending pain pathways. It regulated neuropathic pain by affecting the striatum, periaqueductal gray, cerebellum, and thalamic area, which are thought to regulate the descending pathway. MCS also appeared to suppress activation of the VPL, which is part of the ascending pathway.
-
Trigeminal neuropathic pain is a well-recognized complication of the demyelinating disease multiple sclerosis (MS). However, the mechanisms underlying MS-related trigeminal neuropathic pain are poorly understood. This can be attributed, at least in part, to the lack of an animal model that exhibits trigeminal pathology similar to that described in MS. ⋯ We also observe demyelination of the intra- and extra-pontine aspects of the trigeminal sensory root and the spinal trigeminal tract. This is the first study to show orofacial sensory disturbances and trigeminal demyelination in EAE. Collectively, our data suggest that EAE may be a useful model for understanding MS-related trigeminal neuropathic pain conditions such as trigeminal neuralgia.
-
Mambalgins are 57-amino acid peptides isolated from snake venom that evoke naloxone-resistant analgesia after local (intraplantar) and central (intrathecal) injections through inhibition of particular subtypes of acid-sensing ion channels (ASICs). We now show that mambalgins also have an opioid-independent effect on both thermal and mechanical inflammatory pain after systemic intravenous (i.v.) administration and are effective against neuropathic pain. ⋯ These data further support the role of peripheral and central ASIC1-containing channels in pain, demonstrate their participation in neuropathic pain, and highlight differences in the repertoire of channels involved in different pain conditions. They also strengthen the therapeutic potential of mambalgin peptides that are active in a broader range of experimental pain models and through i.v. systemic delivery.
-
Anesthesia and analgesia · Mar 2016
Electroacupuncture Relieves Nerve Injury-Induced Pain Hypersensitivity via the Inhibition of Spinal P2X7 Receptor-Positive Microglia.
Electroacupuncture (EA) has therapeutic effects on neuropathic pain induced by nerve injury; however, the underlying mechanisms remain unclear. In this study, we examined whether EA treatment relieves pain hypersensitivity via the down-regulation of spinal P2X7 receptor-positive (P2X7R⁺) microglia-mediated overexpression of interleukin (IL)-1β and/or IL-18. ⋯ EA treatment relieves nerve injury-induced tactile allodynia and thermal hyperalgesia via the inhibition of P2X7R⁺ microglia-mediated IL-1β overexpression.