Articles: neuralgia.
-
Among many mechanisms implicated in the development of neuropathic pain after nerve damage is a profound dysfunction of GABAergic inhibitory controls, manifested by ongoing pain, mechanical hypersensitivity, and thermal hyperalgesia. In some respects, neuropathic pain can be considered a "disease" of the nervous system, with features in common with trauma-induced seizures. Indeed, first-line management involves anticonvulsant therapy. ⋯ In related studies, we demonstrated that medial ganglionic eminence cell transplants are also effective in a chronic neuropathic itch model in which there is a significant loss of dorsal horn inhibitory interneurons. Most importantly, in contrast to systemic or intrathecal pharmacological therapies, adverse side effects are minimized when the inhibitory control, namely, γ-aminobutyric acid release, occurs in a spinal cord circuit. These studies suggest that therapy targeted at repairing the GABAergic dysfunction is a viable and novel alternative to the management of neuropathic pain and itch, particularly those that are or become refractory to traditional pharmacotherapy.
-
Brain responses to nociception are well identified. The same is not true for allodynic pain, a strong painful sensation in response to touch or innocuous cold stimuli that may be experienced by patients with neuropathic pain. Brain (or spinal cord) reorganization that may explain this paradoxical perception still remains largely unknown. ⋯ Both thalamic function and structure have been reported to be abnormal or impaired in neuropathic pain conditions including in the basal state, possibly explaining the spontaneous component of neuropathic pain. A further indication as to how the brain can create neuropathic pain response in SII and insular cortices stems from examples of diseases, including single-case reports in whom a focal brain lesion leads to central pain disappearance. Additional studies are required to certify the contribution of these areas to the disease processes, to disentangle abnormalities respectively related to pain and to deafferentation, and, in the future, to guide targeting of stimulation studies.
-
Neuropathic pain (NP), a common form of human pain, often poorly responds to analgesic medications. In this review the authors discuss the pathophysiology and conventional treatment of neuropathic pain and provide evidenced-based statements on the efficacy of botulinum neurotoxins (BoNTs) in this form of pain. The level of efficacy for BoNT treatment in each category of NP is defined according to the published guidelines of the American Academy of Neurology. ⋯ It is probably effective (level B) in posttraumatic neuralgia and painful diabetic neuropathy. The data on complex regional pain syndrome, carpal tunnel syndrome, occipital neuralgia, and phantom limb pain are preliminary and await conduction of randomized, blinded clinical trials. Much remains to be learned about the most-effective dosage and technique of injection, optimum dilutions, and differences among BoNTs in the treatment of neuropathic pain.
-
Pain is a quite frequent complaint accompanying numerous pathologies. Among these pathological cases, numerous neuropathies are retrieved with identified etiologies (chemotherapies, diabetes, surgeries…) and also more diffuse syndromes such as fibromyalgia. More broadly, pain is one of the first consequences of most inherited diseases. ⋯ Among these ion channels, we and others revealed the important role of low voltage-gated calcium channels in cellular excitability in different steps of the pain pathways. These channels, by being activated nearby resting membrane potential, have biophysical characteristics suited to facilitate action potential generation and rhythmicity. In this review, we will present the current knowledge on the role of these channels in the perception and modulation of pain.
-
A workshop of the 2015 International Neuropathic Pain Congress was focused on potassium channels to propose emerging ideas on the role of these channels on pain modulation and to determine whether they can become relevant targets for designing novel analgesic compounds. Two kinds of potassium channels were particularly evoked: selected subunits of the voltage-gated potassium (Kv) and of the K2P channel families. ⋯ Throughout this review, the role of potassium channels in pain is obvious, which renders them potential targets for innovative analgesics with peripheral and/or central action depending on the channel. Clearly, some preliminary results obtained with known or novel potassium channel openers suggest that they might represent a novel class of analgesics in neuropathic pain or other pathological contexts.