Articles: hydrogen-sulfide-metabolism.
-
Cell. Physiol. Biochem. · Jan 2017
ReviewAtherosclerosis and the Hydrogen Sulfide Signaling Pathway - Therapeutic Approaches to Disease Prevention.
Hydrogen sulfide (H2S) is now admitted as a third gasotransmitter together with nitric oxide (NO) and carbon monoxide (CO), albeit it was originally considered as a foul and poisonous gas. Endogenous H2S production in mammalian cells is counting on the three enzymes acting on cysteine. Involvement of H2S in various physiological and pathological processes has been extensively studied in the last fifteen years. ⋯ Exogenous H2S supplement has salutary effects on atherogenesis, and reduction of the endogenous H2S level accelerates atherosclerosis. The anti-atherosclerotic mechanisms of H2S have been descried in different aspects, including endothelium preservation, antioxidative action, anti-inflammatory responses, vasorelaxation, regulation of ion channels, etc. However, further investigation is still needed to help us gain more insights into the fundamental underlying mechanisms, and that will allow us to design better therapeutic applications of H2S in the treatment of atherosclerosis.
-
Review
Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO).
Hydrogen sulfide (H2S) is a physiological mediator with various roles, including neuro-modulation, vascular tone regulation, and cytoprotection against ischemia-reperfusion injury, angiogenesis, and oxygen sensing. Hydrogen polysulfide (H2S n ), which possesses a higher number of sulfur atoms than H2S, recently emerged as a potential signaling molecule that regulates the activity of ion channels, a tumor suppressor, transcription factors, and protein kinases. ⋯ H2S n sulfhydrates (sulfurates) cysteine residues of target proteins and modifies their activity, whereas H2S sulfurates oxidized cysteine residues as well as reduces cysteine disulfide bonds. This review focuses on the recent progress made in studies concerning the production and physiological roles of H2S n and H2S.
-
Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.
-
Handb Exp Pharmacol · Jan 2015
ReviewH2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals.
Hydrogen sulfide (H2S) formed by multiple enzymes including cystathionine-γ-lyase (CSE) targets Cav3.2 T-type Ca2+ channels (T-channels) and transient receptor potential ankyrin-1 (TRPA1). Intraplantar and intracolonic administration of H2S donors promotes somatic and visceral pain, respectively, via activation of Cav3.2 and TRPA1 in rats and/or mice. Injection of H2S donors into the plantar tissues, pancreatic duct, colonic lumen, or bladder causes T-channel-dependent excitation of nociceptors, determined as phosphorylation of ERK or expression of Fos in the spinal dorsal horn. ⋯ In rats with neuropathy induced by L5 spinal nerve cutting or by repeated administration of paclitaxel, an anticancer drug, the neuropathic hyperalgesia is reversed by inhibitors of CSE or T-channels and by silencing of Cav3.2. Upregulation of Cav3.2 protein in DRG is detectable in the former, but not in the latter, neuropathic pain models. Thus, H2S appears to function as a nociceptive messenger by facilitating functions of Cav3.2 and TRPA1, and the enhanced function of the CSE/H2S/Cav3.2 pathway is considered to be involved in the pancreatitis- and cystitis-related pain and in neuropathic pain.
-
Hydrogen sulfide (H2S) has emerged as an important gaseous signaling molecule that is produced endogenously by enzymes in the sulfur metabolic network. H2S exerts its effects on multiple physiological processes important under both normal and pathological conditions. These functions include neuromodulation, regulation of blood pressure and cardiac function, inflammation, cellular energetics and apoptosis. ⋯ Furthermore, the multitude of potential H2S effects has made it difficult to dissect its signaling mechanism and to identify specific targets. In this review, we focus on H2S metabolism and provide an overview of the recent literature that sheds some light on its mechanism of action in cellular redox signaling in health and disease. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.