Articles: hydrogen-sulfide-metabolism.
-
Hydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg(-1) intravenously (i.v.) for 6 h) and treated with vehicle (saline, 1 ml kg(-1) i.v.) or DL-propargylglycine (PAG, 10-100 mg kg(-1) i.v.), an inhibitor of the H2S-synthesizing enzyme cystathionine-gamma-lyase (CSE). ⋯ Pretreatment of rats with PAG abolished the LPS-induced increase in the MPO activity and in the formation of H2S and in the liver. These findings support the view that an enhanced formation of H2S contributes to the pathophysiology of the organ injury in endotoxemia. We propose that inhibition of H2S synthesis may be a useful therapeutic strategy against the organ injury associated with sepsis and shock.
-
Analytical biochemistry · Jun 2005
Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues.
The role of nitric oxide (NO) in redox cell signaling is widely accepted. However, the biological role of another candidate small inorganic signaling molecule and the subject of this study, hydrogen sulfide (H2S), is much less known. H2S as a reductant and nucleophile has numerous potential cellular targets; however, its rapid biological oxidation suggests a fleeting cellular existence. ⋯ Preparations of rat vascular tissue exhibit H2S production on the addition of sulfhydryl-bearing amino acid substrates and H2S consumption when supplied with exogenous H2S. Taken together, these findings suggest the existence of dynamic steady-state cellular H2S levels. The PHSS should facilitate the investigation of H2S biology by providing a previously unattainable continuous record of H2S under biologically relevant conditions.
-
Hydrogen sulfide (H2S) is a naturally occurring gas with potent vasodilator activity. Cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS) utilize L-cysteine as substrate to form H2S. Of these two enzymes, cystathionine-gamma-lyase (CSE) is believed to be the key enzyme that forms H2S in the cardiovascular system. ⋯ In this paper, we report the presence of H2S synthesizing enzyme activity and CSE (as determined by mRNA signal) in the pancreas. Also, prophylactic, as well as therapeutic, treatment with the CSE inhibitor, DL-propargylglycine (PAG), significantly reduced the severity of caerulein-induced pancreatitis and associated lung injury, as determined by 1) hyperamylasemia [plasma amylase (U/L) (control, 1204+/-59); prophylactic treatment: placebo, 10635+/-305; PAG, 7904+/-495; therapeutic treatment: placebo, 10427+/-470; PAG, 7811+/-428; P<0.05 PAG c.f. placebo; n=24 animals in each group]; 2) neutrophil sequestration in the pancreas [pancreatic myeloperoxidase oxidase (MPO) activity (fold increase over control) (prophylactic treatment: placebo, 5.78+/-0.63; PAG, 2.97+/-0.39; therapeutic treatment: placebo, 5.48+/-0.52; PAG, 3.03+/-0.47; P<0.05 PAG c.f. placebo; n=24 animals in each group)]; 3) pancreatic acinar cell injury/necrosis; 4) lung MPO activity (fold increase over control) [prophylactic treatment: placebo, 1.99+/-0.16; PAG, 1.34+/-0.14; therapeutic treatment: placebo, 2.03+/-0.12; PAG, 1.41+/-0.97; P<0.05 PAG c.f. placebo; n=24 animals in each group]; and 5) histological evidence of lung injury. These effects of CSE blockade suggest an important proinflammatory role of H2S in regulating the severity of pancreatitis and associated lung injury and raise the possibility that H2S may exert similar activity in other forms of inflammation.