Articles: hyperalgesia.
-
Background Chronic pain affects millions of people worldwide; however, its cellular and molecular mechanisms have not been completely elucidated. It is thought that chronic pain is triggered by nociceptive sensitization, which produces elevated nocifensive responses. A model has been developed in Drosophila melanogaster to investigate the underlying mechanisms of chronic pain using ultraviolet-induced tissue injury to trigger thermal allodynia, a nociceptive hypersensitivity to a normally innocuous stimulus. ⋯ The effects on pain perception appear to be specific to the sensitization system, as the ability to respond to a normally noxious stimulus in the absence of injury was left intact, and no nociceptor morphological defects were observed. Conclusion These results provide further support of the hypothesis that the BMP pathway plays a crucial role in the development of nociceptive sensitization. Because of its strong conservation between invertebrates and mammals, the BMP pathway may be worthy of future investigation for the development of targeted treatments to alleviate chronic pain.
-
Anesthesia and analgesia · Jan 2018
Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.
Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. ⋯ The surgical plantar incision with or without perioperative fentanyl induced significant mechanical and thermal hyperalgesia, an increased expression of IL-1β, IL-6, TNF-α in the spinal cord and DRG, and activation of microglia in the spinal cord.
-
Objective Although nociceptive sensitisation is an important pathophysiological process in migraine and migraine chronification, its underlying mechanisms remain unclear. Toll-like receptor 4 (TLR4), a pattern-recognition molecule, has a critical role in both neuropathic pain and morphine tolerance. The present study examined whether elements of the TLR4 pathway contribute to hyperalgesia induced by dural inflammation in rats. ⋯ The inflammatory soup stimulus increased the production of TLR4 downstream molecules and interleukin-1 beta. Higher levels of microglia activation and brain-derived neurotrophic factor release were observed following the administration of the inflammatory soup but were alleviated by TAK-242. Conclusions These data suggest that the TLR4 signalling pathway promotes hyperalgesia induced by acute inflammatory soup delivery by stimulating the production of proinflammatory cytokines and activating microglia.
-
Background Lithium is widely used to treat bipolar disorders and displays mood stabilizing properties. In addition, lithium relieves painful cluster headaches and has a strong analgesic effect in neuropathic pain rat models. Objectives To investigate the analgesic effect of lithium on the cuff model of neuropathic pain. ⋯ Biochemical analyses highlight a significant increase in beta-endorphin levels by 30% in the brain of lithium-treated mice compared to controls. No variation of beta-endorphin was detected in the blood. Conclusions Together, our results provide evidence that lithium induces a long-lasting analgesia in neuropathic mice presumably through elevated brain levels of beta-endorphin and the activation of MORs.
-
Comparative Study
A comparison of early and late treatments on allodynia and its chronification in experimental neuropathic pain.
Background Surgeries causing nerve injury can result in chronic neuropathic pain, which is clinically managed by using antidepressant or anticonvulsant drugs. Currently, there is a growing interest for investigating preemptive treatments that would prevent this long-term development of neuropathic pain. Our aim was to compare analgesic drugs using two distinct treatment modalities: either treatment onset at surgery time or following a couple of weeks of neuropathic pain. ⋯ When treatments started at day 25 postsurgery, desipramine, duloxetine, and anticonvulsants suppressed the mechanical allodynia. Conclusions Our data show that allodynia measured in experimental neuropathic pain model likely results from a combination of different processes (early vs. late allodynia) that display different sensitivity to treatments. We also propose that early anticonvulsant treatment with gabapentin or carbamazepine may have a prophylactic effect on the chronification of allodynia following nerve injury.