Articles: hyperalgesia.
-
Journal of optometry · Jan 2017
ReviewThe potential role of neuropathic mechanisms in dry eye syndromes.
Dry eye syndromes can involve both nociceptive and neuropathic symptoms. Nociceptive symptoms are the normal physiological responses to noxious stimuli. Neuropathic symptoms are caused by a lesion or disease of the somatosensory nervous system and can be the result of hypersensitisation of peripheral or central corneal and conjunctival somatosensory nerves. ⋯ Dry eye symptoms in the absence of commensurate evidence of tear dysfunction, and unsatisfactory response to tear dysfunction therapies should prompt consideration of neuropathic mechanisms being involved. Symptoms which persist after local anaesthetic instillation are more likely to be neuropathic in origin. Reducing inflammation may help limit any associated neuroplastic hypersensitivity.
-
Modulation of N-methyl-D-aspartate receptor subunits NR1 and NR2 through phosphorylation mediates opioid-induced hyperalgesia, and activations of protein kinase C and extracellular signal-regulated kinase 1/2 potentiate while activation of calcium/calmodulin-dependent protein kinase II inhibits opioid-induced hyperalgesia. However, the mechanism of opioid-induced hyperalgesia development and in particular the potential interplay between N-methyl-D-aspartate receptors and protein kinase C or calcium/calmodulin-dependent protein kinase II or extracellular signal-regulated kinase 1/2 in the development of remifentanil-induced hyperalgesia is unclear. ⋯ It is concluded that the enhancements in function and quantity of N-methyl-D-aspartate receptor via phosphorylation of its subunits through protein kinase C and calcium/calmodulin-dependent protein kinase II activation may represent the major mechanism whereby remifentanil induced hyperalgesia.
-
Neuroimmunomodulation · Jan 2017
Effect of Ceftiofur on Hyperalgesia and Allodynia in a Rat Neuropathic Pain Model: The Role of Immune Processes.
Inflammatory and immune mechanisms play important roles in the pathogenesis of neuropathic pain. Ceftiofur, a third-generation cephalosporin, has anti-inflammatory effects by inhibiting tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nuclear factor (NF)-κB, and mitogen-activated protein kinase (MAPK) signaling. This study aimed to investigate the effect of ceftiofur on hyperalgesia and allodynia in neuropathic rats and to define the possible contribution of immune mechanisms to this effect. ⋯ Ceftiofur has anti-inflammatory effects by decreasing iNOS, IL-1β, and p38 MAPK expression in lumbar spinal cord, and treatment of neuropathic rats with repeated doses of ceftiofur for 14 days results in antihyperalgesic effects.
-
Background Accumulating studies have suggested that remifentanil, the widely-used opioid analgesic in clinical anesthesia, can activate the pronociceptive systems and enhance postoperative pain. Glial cells are thought to be implicated in remifentanil-induced hyperalgesia. Electroacupuncture is a complementary therapy to relieve various pain conditions with few side effects, and glial cells may be involved in its antinociceptive effect. ⋯ Glial fibrillary acidic protein, Iba1, proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α), and phosphorylated mitogen-activated protein kinases (p-p38, p-JNK, and p-ERK1/2) were upregulated after surgical incision, remifentanil infusion, and especially after their combination. Intraoperative electroacupuncture significantly attenuated incision- and/or remifentanil-induced pronociceptive effects, spinal glial activation, proinflammatory cytokine upregulation, and phosphorylated mitogen-activated protein kinase upregulation. Conclusions Our study suggests that remifentanil-induced postoperative hyperalgesia can be relieved by intraoperative electroacupuncture via inhibiting the activation of spinal glial cells, the upregulation of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases.
-
Morphine and other opioids are among the most effective prescription medications for the treatment of pain. Addiction and hyperalgesia associated with their long-term use limits the clinical utility of these drugs. In view of a role of somatodendritic serotonin-1A receptors in addiction and analgesic effects of morphine, the present study concerns effects of co-use of buspirone, a partial agonist at the serotonin-1A receptor, on reinforcing, hyperalgesic, and motor effects of morphine in rats. ⋯ These effects of repeated morphine administration were blocked in rats cotreated with buspirone. Pain perception was also slightly reduced in rats repeatedly treated with higher doses of buspirone. The findings are important for improving and extending therapeutic medications for pain.