Articles: hyperalgesia.
-
Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. ⋯ These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron hyperexcitability via inhibition of both peripheral and central cyclooxygenase-2 cascade signaling pathways. These findings support the idea of resveratrol as a potential complementary and alternative medicine for the treatment of trigeminal inflammatory hyperalgesia without side effects.
-
Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCg) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCg activation and mTOR-dependent PKCg synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. ⋯ From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCg activation and mTOR-dependent PKCg synthesis participate in the initiation and maintenance of mechanical hypersensitivity in spared nerve injury, which represents as a novel insight into the therapeutic strategy of pain in the periphery.
-
Although calcitonin gene-related peptide is a recognized pain transducer, the expression of calcitonin gene-related peptide in primary afferents may be differentially affected following different types of nerve injury. Here, we examined whether different calcitonin gene-related peptide expression patterns in primary afferents contributes to distinct sensory disturbances in three animal models of sciatic nerve injury: chronic constriction injury, mild (100 g force) or strong (1000 g force) transient crush in rats. Assessments of withdrawal reflexes and spontaneous behavior indicated that chronic constriction injury and mild crush resulted in positive neuropathic symptoms (static/dynamic mechanical allodynia, heat hyperalgesia, cold allodynia, spontaneous pain). ⋯ Moreover, nerve injury caused a subcellular redistribution of calcitonin gene-related peptide from small- and medium-size dorsal root ganglia neurons to large-size dorsal root ganglia neurons, which paralleled the development of positive neuropathic symptoms. Intrathecal administration of the calcitonin gene-related peptide receptor antagonist ameliorated these positive symptoms, indicating that the expression of calcitonin gene-related peptide in large-size dorsal root ganglia neurons is important for the positive neuropathic symptoms in all three models. Taken together, these results suggest that distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve.
-
The mechanisms driving osteoarthritic pain remain poorly understood, but there is increasing evidence for a role of the central nervous system in the chronification of pain. We used functional magnetic resonance imaging to investigate the influence of a model of unilateral knee osteoarthritis on nociceptive processing. ⋯ We provide evidence for modulation of nociceptive processing in a chronic knee osteoarthritis pain model with stronger brain activation and alteration of brain networks induced by the pro-nociceptive stimulus. We also report a shift to a medial pain activation pattern following stimulation of the hyperalgesic hindpaw. Taken together, our data support altered neural pain processing as a result of peripheral and central pain sensitization in this model.
-
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP-PACAP receptors signaling system in the modulation of spinal nociceptive transmission. We have previously reported that a single intrathecal injection of PACAP or a PACAP specific (PAC1) receptor selective agonist, maxadilan, in mice induced dose-dependent aversive behaviors, which lasted more than 30 min, and suggested that the maintenance of the nociceptive behaviors was associated with the spinal astrocytic activation. ⋯ Our data suggest that spinal astrocytic activation triggered by the PAC1 receptor stimulation contributes to both induction and maintenance of the long-term mechanical allodynia.