Articles: hyperalgesia.
-
Curr Pain Headache Rep · Dec 2009
ReviewEnhanced pain perception in rheumatoid arthritis: novel considerations.
Enhanced pain perception is common among patients with rheumatoid arthritis (RA). Given the putative role of proinflammatory cytokines in the development of hyperalgesia, a greater understanding of factors that facilitate increased cytokine expression in RA stands to increase understanding of the sources of enhanced pain perception. Patients with RA have significantly greater stress-induced proinflammatory cytokine release. ⋯ Parasympathetic insufficiency has also been demonstrated, which may enhance pain perception indirectly through disinhibited cytokine expression. Several psychological variables have also been demonstrated to affect pain perception in patients with RA. Identification of factors that contribute to enhanced pain perception in RA may aid in the development of novel analgesic strategies that, in turn, may decrease disease activity and improve general clinical outcomes.
-
Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder that is often accompanied by both visceral and somatic hyperalgesia (enhanced pain from colorectal and somatic stimuli). Neural mechanisms of both types of hyperalgesia have been analyzed by neuroimaging studies of IBS patients and animal analog studies of "IBS-like" rats with delayed rectal and somatic hypersensitivity. Results from these studies suggest that pains associated with both visceral and widespread secondary cutaneous hyperalgesia are dynamically maintained by tonic impulse input from the non-inflamed colon and/or rectum and by brain-to-spinal cord facilitation. ⋯ Yet these forms of hyperalgesia are also highly modifiable by placebo and nocebo factors (e.g., expectations of relief or distress, respectively). Our working hypothesis is that synergistic interactions occur between placebo/nocebo factors and enhanced afferent processing so as to enhance, maintain, or reduce hyperalgesia in IBS. This explanatory model may be relevant to other persistent pain conditions.
-
Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. ⋯ In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
-
Central post-stroke pain (CPSP) is a neuropathic pain syndrome that can occur after a cerebrovascular accident. This syndrome is characterised by pain and sensory abnormalities in the body parts that correspond to the brain territory that has been injured by the cerebrovascular lesion. ⋯ Future prospective studies with clear diagnostic criteria are essential for the proper collection and processing of epidemiological data. Although treatment of CPSP is difficult, the most effective approaches are those that target the increased neuronal hyperexcitability.
-
Review Meta Analysis
Do opioids induce hyperalgesia in humans? An evidence-based structured review.
DESIGN/OBJECTIVES: Consistent rodent evidence indicates that opioid exposure will decrease the rodent's pain threshold (ptr). This is termed opioids-induced hyperalgesia (OIH). Currently, the consistency of the evidence for the occurrence of OIH in humans is unclear. This is a structured evidence-based review for all levels of evidence (all studies and case reports) on OIH in humans in order to determine the consistency of this evidence. ⋯ There is not sufficient evidence to support or refute the existence of OIH in humans except in the case of normal volunteers receiving opioid infusions. Prospective CPP clinical studies measuring ptrs and tolerances pre- and post-opioid placement with CPP non-opioid control groups are required.