Articles: hyperalgesia.
-
Nerve growth factor (NGF) induces local hyperalgesia for a few days after intramuscular injection, but longer-lasting muscle pain upon systemic administration. As the muscle fascia is densely innervated by free nerve endings, we hypothesized a lasting sensitization of fascia nociceptors by NGF. We administered 1 μg NGF (dissolved in 100 μL saline) ultrasound-guided to the fascia of the Musculus erector spinae muscle at the lumbar level of 14 male volunteers and assessed hypersensitivity after 6 hours, and 1, 3, 7, 14, and 21 days. ⋯ Pain upon injected protons was significantly elevated (P<0.04) for 2 weeks. NGF induced a sensitization of the muscle fascia to mechanical and chemical stimuli lasting for up to 2 weeks. As nociceptors in the fascia appear to be particularly prone to sensitization, they may contribute to acute or chronic muscle pain.
-
Neurochemical research · Aug 2012
Interleukin-10 of red nucleus plays anti-allodynia effect in neuropathic pain rats with spared nerve injury.
Our previous studies have shown that pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in red nucleus (RN) are involved in the development of neuropathic pain and play facilitated roles on the mechanical allodynia induced by peripheral nerve injury. The current study was designed to evaluate the expression and effect of IL-10, an anti-inflammatory cytokine, in the RN of rats with spared nerve injury (SNI). ⋯ Results demonstrated that higher doses of IL-10 (1.0 and 0.5 μg/μl) significantly attenuated the mechanical allodynia of neuropathic rats, while 0.1 μg/μl of IL-10 did not show any analgesic effect. These results suggest that IL-10 of RN participates in the development of neuropathic pain and plays inhibitory roles on the mechanical allodynia induced by SNI.
-
The veterinary journal · Aug 2012
Comparative StudyClinical assessments of increased sensory sensitivity in dogs with cranial cruciate ligament rupture.
Dogs with chronic pain have a compromised quality of life. Repeatable and accurate sensory assessments form a means by which the hypersensitivity likely to reflect chronic pain may be quantified. These assessments can be applied to individuals to identify those that may benefit from improved analgesic relief. ⋯ Static weight bearing and gait parameter scores were also reduced in the affected hind limb compared to the opposing hind limb of dogs with CCLR; no such differences were found between the hind limbs of healthy (control) dogs. The quantitative sensory tests permitted the differentiation of limbs affected by CCLR from healthy limbs. Dogs presenting with CCLR demonstrate objectively quantitative sensory sensitivities, which may require additional consideration in case management.
-
The analgesic properties and mechanisms of loperamide hydrochloride, a peripherally acting opioid receptor agonist, in neuropathic pain warrant further investigation. ⋯ These findings suggest that both systemic and local administration of loperamide induce an opioid receptor-dependent inhibition of heat and mechanical hyperalgesia in nerve-injured rats, but that local paw administration of loperamide also induces thermal and mechanical antinociception.
-
The rodent acidic saline model of hyperalgesia uses repeat injections of acidic saline in the right lateral gastrocnemius muscle, spaced five days apart, to induce a persistent decrease in hindpaw withdrawal thresholds. The objective of this study was to determine if alternate injection sites would permit development of hyperalgesia. ⋯ These data indicate that anatomically diverse peripheral stimuli can converge within the central nervous system to produce hyperalgesia.