Articles: hyperalgesia.
-
We aim to determine the effects of Botulinum toxin type A (BTX-A) on neuropathic pain behavior and the expression of P2X(3) receptor in dorsal root ganglion (DRG) in rats with neuropathic pain induced by L5 ventral root transection (L5 VRT). ⋯ L5 VRT led to over-expression of P2X(3) receptors in the L5 DRG and bilateral mechanical allodynia in rats. Subcutaneous injection of BTX-A significantly reversed the neuropathic pain behavior and the over-expression of P2X(3) receptor in nociceptive neurons. These data not only show over-expression of purinergic receptors in the VRT model of neuropathic pain but also reveal a novel mechanism of botulinum toxin action on nociceptive neurons.
-
Inhibitor-κB kinase ε (IKKε) was only recently identified as an enzyme with high homology to the classical I-κB kinase subunits, IKKα and IKKβ. Despite this similarity, it is mainly discussed as a repressor of viral infections by modulating type I IFNs. However, in vitro studies also showed that IKKε plays a role in the regulation of NF-κB activity, but the distinct mechanisms of IKKε-mediated NF-κB activation are not clear. ⋯ Antinociceptive effects were associated with reduced activation of NF-κB and attenuated NF-κB-dependent induction of cyclooxygenase-2, inducible NO synthase, and metalloproteinase-9. In contrast, IRF-3, which is an important IKKε target in viral infections, was not regulated after inflammatory nociceptive stimulation. Therefore, we concluded that IKKε modulates inflammatory nociceptive sensitivity by activation of NF-κB-dependent gene transcription and may be useful as a therapeutic target in the treatment of inflammatory pain.
-
In addition to producing analgesia, opioids can increase sensitivity to pain (opioid-induced hyperalgesia [OIH]) in humans and rodents. Tolerance/OIH is likely mediated by similar mechanisms that lead to development of hyperalgesia after nerve injury (neuropathic pain). OIH may be a reason for loss of opioid efficacy and/or a worsening of pain. Ultra-low-dose (ULD) opioid evokes hyperalgesia independently of analgesia. Tolerance to ULD-OIH develops with repeated dosing in rats. ⋯ Although the translational aspect of this preclinical study has limitations, the present data may suggest a new strategy for the pre-emptive use of ULD opioids to prevent the development of neuropathic pain with certain procedures or disease states.
-
Chronic stress-related conditions are often associated with stress-induced hyperalgesia. However, the neural circuitry responsible for producing stress-induced hyperalgesia is not well characterized. The aim of this study was to determine the contribution of mu-opioid expressing brainstem neurons to the expression of stress-induced hyperalgesia. ⋯ The finding that chronic stress produces mechanical hypersensitivity through circuitry that involves the RVM provides a potential neurobiological basis for the complex interaction between chronic stress and pain.
-
Diabetic neuropathy is a common neuropathy associated with paresthaesia and pain. The mechanisms underlying the painful conditions are not well understood. The aim of this study is to investigate the participation of purinergic P2X3 receptors in painful diabetic neuropathy. ⋯ These results indicate that a large enhancement of P2X3 receptor activity and an increase in the membrane expression of P2X3 receptors contribute to the development of chronic pain in STZ-induced diabetic rats and suggest a possible target for the treatment of diabetic neuropathic pain.