Articles: hyperalgesia.
-
Pharmacol. Biochem. Behav. · Jan 2011
Pharmacological interaction between oxcarbazepine and two COX inhibitors in a rat model of inflammatory hyperalgesia.
Oxcarbazepine, ibuprofen and etodolac have efficacy in inflammatory pain. The combination of different drugs activates both central and peripheral pain inhibitory pathways to induce additive or synergistic antinociception, and this interaction may allow lower doses of each drug combined and improve the safety profile, with lower side-effects. This study aimed to examine the effects of oxcarbazepine-ibuprofen and oxcarbazepine-etodolac combinations, in a rat model of inflammatory hyperalgesia, and determine the type of interaction between drugs. ⋯ In contrast, there was an additive interaction with etodolac. Synergistic interaction of oxcarbazepine with ibuprofen and its additive interaction with etodolac provide new information about the combination pain treatment and could be explored further in patients with inflammatory pain. Adverse effect analysis of the combinations is necessary to verify possible clinical use of the mixtures.
-
Clin Exp Obstet Gyn · Jan 2011
Case ReportsSympathetic neural hyperalgesia edema syndrome, a frequent cause of pelvic pain in women, mistaken for Lyme disease with chronic fatigue.
To show that chronic fatigue syndrome can be mistakenly attributed to Lyme disease rather than considering sympathetic neural hyperalgesia edema syndrome. This common disorder of women, frequently, but not always causing pelvic pain, can present simply as chronic fatigue. ⋯ This very treatable disorder of the sympathetic nervous system should be considered in women with an unknown cause of chronic fatigue or if the symptoms persist despite treatment of another potential cause.
-
Transient receptor potential vanilloid 1 (TRPV1) is primarily expressed in central and peripheral terminals of non-myelinated primary afferent neurons. We previously showed that AS1928370, a novel TRPV1 antagonist that can prevent ligand-induced activation but not proton-induced activation, ameliorates neuropathic pain in rats without hyperthermic effect. In this study, we investigated its analgesic profile in mice. ⋯ Intrathecal administration of AS1928370 (30 µg/body) also significantly suppressed mechanical allodynia. In addition, AS1928370 showed no effect on locomotor activity up to 30 mg/kg p.o. These results suggest that spinal TRPV1 has an important role in the transmission of neuropathic pain and that the central nervous system (CNS) penetrant TRPV1 receptor antagonist AS1928370 is a promising candidate for treating neuropathic pain.
-
Randomized Controlled Trial
The endogenous opioid system is not involved in modulation of opioid-induced hyperalgesia.
Some recent studies suggested a role of the endogenous opioid system in modulating opioid-induced hyperalgesia (OIH). In order to test this hypothesis, we conducted a prospective randomized, placebo-controlled, 2-way crossover study in healthy human volunteers. We utilized a well-established model of inducing OIH after a brief exposure to the μ-opioid agonist remifentanil using intradermal electrical stimulation. Patients were exposed to a randomized 90-minute infusion of remifentanil or saline placebo during 2 separate occasions. Development of OIH was quantified using changes in the average radius of the area of secondary hyperalgesia generated by electrical pain stimulation. A 23.6% (20.2) increase in area of secondary hyperalgesia over baseline was observed in the postinfusion period of the remifentanil session, demonstrating development of OIH (P = .03). In order to test endogenous opioid system modulation of OIH, patients were given a 1-time bolus of naloxone, which had no effect on the size of the hyperalgesic lesion in either the remifentinal or placebo session. These results suggested that the endogenous opioid system did not appear to modulate OIH. ⋯ Experimental evidence suggested that the endogenous opioid system did not significantly affect opioid-induced hyperalgesia. Consequently, this study suggested that alternative mechanisms such as pronociceptive stimulation and neuroplastic changes might be responsible for expression of OIH.
-
Swiss medical weekly · Jan 2011
Randomized Controlled TrialThe ED50 and ED95 of ketamine for prevention of postoperative hyperalgesia after remifentanil-based anaesthesia in patients undergoing laparoscopic cholecystectomy.
Various research programmes have shown that intraoperative infusion of remifentanil has been associated with postoperative hyperalgesia. Previous studies have demonstrated that low-dose ketamine can inhibit central sensitisation and prevent opioid-induced hyperalgesia (OIH). However, the optimal ketamine dose to prevent OIH has not been determined. In the present study we aimed to determine the ED50 and ED95 of ketamine for prevention of postoperative hyperalgesia after remifentanil-based anaesthesia in patients undergoing laparoscopic cholecystectomy. ⋯ The ED50 and ED95 of ketamine for prevention of postoperative hyperalgesia after remifentanil-based anaesthesia in patients undergoing laparoscopic cholecystectomy were 0.24 mg/kg and 0.33 mg/kg respectively.