Articles: hyperalgesia.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Leptin derived from adipocytes in injured peripheral nerves facilitates development of neuropathic pain via macrophage stimulation.
Nerve injury may result in neuropathic pain, characterized by allodynia and hyperalgesia. Accumulating evidence suggests the existence of a molecular substrate for neuropathic pain produced by neurons, glia, and immune cells. Here, we show that leptin, an adipokine exclusively produced by adipocytes, is critical for the development of tactile allodynia through macrophage activation in mice with partial sciatic nerve ligation (PSL). ⋯ Administration of peritoneal macrophages treated with leptin to the injured SCN reversed the failure of ob/ob mice to develop PSL-induced tactile allodynia. We suggest that leptin induces recruited macrophages to produce pronociceptive mediators for the development of tactile allodynia. This report shows that adipocytes associated with primary afferent neurons may be involved in the development of neuropathic pain through adipokine secretion.
-
Cutaneous allodynia (CA) has been described in migraine and has been related to treatment failure. There are little data about the incidence of CA in other primary headache syndromes such as cluster headache (CH). The objectives of this study are to evaluate the prevalence of dynamic mechanical (brush) allodynia (BA) in CH patients attending a tertiary headache clinic, and to assess its relation to disease characteristics. ⋯ There was no statistically significant association between the presence of allodynia and age, gender, diagnosis (episodic vs. chronic CH), disease duration or disease severity. In conclusion, BA was common in this CH patient sample. The therapeutic implications of the presence of BA in CH need to be further studied.
-
Basic Clin. Pharmacol. Toxicol. · Aug 2009
Randomized Controlled TrialEvoked human oesophageal hyperalgesia: a potential tool for analgesic evaluation?
Hypersensitivity is a common finding in visceral disorders. Therefore, in the development and testing of analgesics for the treatment of visceral pain, it is important to establish an experimental pain model of visceral hypersensitivity. Such a model will mimic the clinical situation to a higher degree than pain models where the receptors and peripheral afferents are briefly activated as with, for example, electrical, thermal, and mechanical stimulations. ⋯ Acid+capsaicin perfusion induced 56% reduction of the pain threshold to heat (P = 0.04), 19% reduction of the pain threshold to electrical stimuli (P < 0.001), 78% increase of the referred pain areas to mechanical stimulation (P < 0.001) and 52% increase of the referred pain areas to electrical stimulus (P = 0.045). All volunteers were sensitised to one or more modalities by acid+capsaicin. The model was able to evoke consistent hyperalgesia and may be useful in future pharmacological studies.
-
Clinical Trial
Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study.
Neurotoxicity represents a major complication of oxaliplatin. This study aimed to identify early clinical markers of oxaliplatin neurotoxicity, in comparison with cisplatin, and detect predictors of chronic neuropathy. Forty-eight patients with mainly colorectal cancer were evaluated prospectively before oxaliplatin (n=28) or cisplatin (n=20) administration and then 2 weeks after the third (C3), sixth (C6) and ninth (C9) cycles. ⋯ In contrast, thermal testing identified sustained (irreversible between cycles) neurotoxicity two weeks after C3 in the oxaliplatin group only, characterized by hyperalgesia to cold (5-25 degrees C) (F=11.4; p=0.0002 relative to cisplatin patient responses in the hand) and heat stimuli (38-48 degrees C) (F=4.1; p=0.049 for the hand). Cold-evoked symptoms lasting 4 days or more after C3 predicted chronic neuropathy (OR: 22; 95% CI: 1.54-314.74; p=0.02) whereas enhanced pain in response to cold (20 degrees C stimulus on the hand) predicted severe neuropathy (OR: 39; 95% CI: 1.8-817.8 p=0.02). Thermal hyperalgesia is a relevant clinical marker of early oxaliplatin neurotoxicity and may predict severe neuropathy.