Articles: hyperalgesia.
-
Clin. Exp. Pharmacol. Physiol. · Apr 2009
Antinociceptive interactions between anandamide and endomorphin-1 at the spinal level.
1. Although it is well known that the combined administration of synthetic or plant-originated opioids with cannabinoids (CB) results in synergistic antinociception, the effects of combined administration of endogenous ligands acting at micro-opioid and CB receptors are not known. The aim of the present study was to determine the interaction between anandamide (AEA; a CB(1) receptor agonist) and endomorphin-1 (EM-1; a micro-opioid receptor agonist) after intrathecal administration. 2. ⋯ The results of the present study indicate that the coadministration of AEA and EM-1 results in potentiated antihyperalgesia only for a combination of specific doses. Because AEA activates other receptor types (e.g. TRPV1) in addition to CB(1) receptors, the results of the present suggest that, after the coadministration of EM-1 and AEA, complex interactions ensue that may lead to different outcomes compared with those seen following the injection of exogenous ligands.
-
The facet joint is a common source of pain in both the neck and low back, and can be injured by abnormal loading of the spinal joints. Whereas a host of nociceptive changes including neuronal activation, neuropeptide expression, and inflammatory mediator responses has been reported for rat models of joint pain, no such responses have been explicitly investigated or quantified for painful mechanical injury to the facet joint. Two magnitudes of joint loading were separately imposed in a rat model of cervical facet joint distraction: Painful and nonpainful distractions. Behavioral outcomes were defined by assessing mechanical hyperalgesia in the shoulders and forepaws. Substance P (SP) mRNA and protein levels were quantified in the dorsal root ganglion (DRG) and spinal cord at days 1 and 7 following distraction. Painful distraction produced mechanical hyperalgesia that was significantly greater (P < .010) than that for a nonpainful distraction. Painful distraction significantly increased spinal SP mRNA (P = .048) and SP protein expression in the DRG (P = .013) at day 7 compared to nonpainful distraction. However, spinal SP protein for painful distraction was significantly less (P = .024) than that for nonpainful distraction at day 1. Joint distractions producing different behavioral outcomes modulate SP mRNA and protein in the DRG and spinal cord, suggesting that SP responses may be involved with different temporal responses in painful joint loading. ⋯ SP mRNA and protein in the DRG and spinal cord are quantified at 2 time points after cervical facet joint distractions that separately do or do not produce mechanical hyperalgesia. Studies describe a role for SP to contribute to pain produced by mechanical joint loading.
-
Brain research bulletin · Mar 2009
Additive anti-hyperalgesia of electroacupuncture and intrathecal antisense oligodeoxynucleotide to interleukin-1 receptor type I on carrageenan-induced inflammatory pain in rats.
Accumulating evidence shows that spinal interleukin-1beta (IL-1beta) plays a critical role in inflammatory pain. Electroacupuncture (EA) can effectively attenuate inflammatory hyperalgesia both in clinical practices and experimental studies. However, little is known about the relationship between spinal IL-1beta and EA analgesia. ⋯ Down-regulation of IL-1RI expression by repeated intrathecal antisense ODN (50 microg/10 microl) significantly increased the mean PWL up to 5.75+/-0.15 s in 180-300 min post-carrageenan injection. Additionally, when the combination of EA with antisense ODN was used, thermal hyperalgesia was further alleviated than EA or antisense ODN alone, with a maximum PWL of 7.66+/-0.50 s at 30 min post the beginning of EA treatment. The results suggested an involvement of the spinal IL-1beta/IL-1RI system in EA-induced anti-hyperalgesia in inflammatory pain.
-
J. Neurosci. Methods · Mar 2009
Von Frey's hairs--a review of their technology and use--a novel automated von Frey device for improved testing for hyperalgesia.
We describe a device which allows the mechanical sensitivity of trigeminovascular sensory neurons to be monitored over extended time periods. The device can be used to stimulate either the skin or dura mater and consists of a solenoid-driven plunger to which are fixed interchangeable von Frey hairs. ⋯ The advantages of the device over manual stimulation include the reproducibility of the site of stimulation; the ability to apply a known force for a known time; the ability to measure response latencies to millisecond precision and to compare them to latencies to other stimuli and; easy interface with computer-control. We discuss some of the drawbacks of the von Frey system as usually used and illustrate the use of the new device with results from experiments on peripherally induced sensitization.
-
Neuroscience letters · Mar 2009
Inverse relation between intensity of GFAP expression in the substantia gelatinosa and degree of chronic mechanical allodynia.
Glial cells are known to have a large impact on neuropathic pain conditions. Within the spinal cord, microglia rapidly respond to peripheral nerve injury, resulting in central sensitization and ultimately in the onset of enhanced pain behaviour. Astroglia respond with a short delay and are thought to contribute to the early maintenance of neuropathic pain. ⋯ Moreover, it was found that neuropathic animals with a higher degree of mechanical allodynia had a lower intensity of GFAP expression in lamina II (substantia gelatinosa). From these data we conclude that the role of astroglial responses in mechanical allodynia after peripheral nerve injury may be less straightforward as previously thought. Although astroglia are known to play a pro-nociceptive role in early neuropathic pain states, this role may shift to anti-nociception in more chronic pain states.