Articles: hyperalgesia.
-
Although intrathecal (i.t.) administration of the alpha(2)-adrenoceptor agonist clonidine has a pronounced analgesic effect, the clinical use of clonidine is limited by its side effects. Previously, our laboratory has demonstrated that the subcutaneous injection of diluted bee venom (DBV) into an acupoint (termed apipuncture) produces significant analgesic effect in various pain animal models. The present study was designed to examine whether DBV injection into the Zusanli acupoint (ST-36) could enhance lower-dose clonidine-induced analgesic effects without the development of hypotension, bradycardia, or sedation. In the mouse formalin test, DBV injection produced a dramatic leftward shift in the dose-response curve for clonidine-induced analgesia. In a rat neuropathic pain model i.t. clonidine dose dependently suppressed chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia, and this clonidine-induced analgesic effect was significantly potentiated by apipuncture pretreatment. DBV apipuncture alone or in combination with a low dose of i.t. clonidine produced an analgesic effect similar to that of the high dose of clonidine, but without significant side effects. The analgesic effect produced by the combination of i.t. clonidine and apipuncture was completely blocked by pretreatment with an alpha(2)-adrenoceptor antagonist. These data show that DBV-apipuncture significantly enhances clonidine-induced analgesia and suggest that a combination of low dose clonidine with acupuncture therapy represents a novel strategy for pain management that could eliminates clonidine's side effects. ⋯ This study demonstrated that intrathecal clonidine-induced analgesia is significantly enhanced when it is combined with chemical acupuncture treatment. The administration of low-dose clonidine in combination with acupuncture produced a potent analgesic effect without significant side effects and thus represents a potential novel strategy for the management of chronic pain.
-
Lysophosphatidic acid (LPA) signaling, through LPA(1) receptor and its downstream RhoA, has been reported to initiate nerve injury-induced neuropathic pain. In the present study, we performed gene expression profiling of the dorsal root ganglion (DRG) to identify genes induced by intrathecal injection of LPA in a botulinum toxin C3 (BoNT/C3)-reversible manner. We selected and functionally characterized ephrinB1 from 82 identified genes as a potential gene involved in pain transmission, since ephrinB1 is implicated to modulate N-methyl-d-aspartate (NMDA) receptor functions in spinal pain transmission. ⋯ In addition, intrathecal treatment with a soluble ligand, ephrinB1-Fc, caused similar neuropathic pain-like behaviors in a manner that was reversible by the NMDA receptor antagonist MK-801. These results suggest that ephrinB1 plays a crucial role in LPA-induced neuropathic pain. In addition, the present study may provide a new strategy to identify unique neuropathic pain-related genes.
-
Hydrogen sulfide (H2S), a gasotransmitter, facilitates membrane currents through T-type Ca2+ channels, and intraplantar (i.pl.) administration of NaHS, a donor of H2S, causes prompt hyperalgesia in rats. In this context, we asked whether intrathecal (i.t.) administration of NaHS could mimic the hyperalgesic effect of i.pl. NaHS in rats, and then examined if Cav3.2 isoform of T-type Ca2+ channels contributed to the pro-nociceptive effects of i.t. and i.pl. ⋯ Repeated i.t. administration of antisense oligodeoxynucleotides (ODNs) targeting rat Cav3.2, but not mismatch ODNs, caused silencing of Cav3.2 protein in the dorsal root ganglia and spinal cord, and then attenuated the hyperalgesia induced by either i.t. or i.pl. NaHS. Our findings thus establish that spinal and peripheral NaHS/H2S activates or sensitizes Cav3.2 T-type Ca2+ channels expressed in the primary afferents and/or spinal nociceptive neurons, leading to sensitization of nociceptive processing and hyperalgesia.
-
The effect of the alpha(1)-adrenoceptor agonist phenylephrine on sensitivity to heat was investigated at three sites of mild burn injury in the cutaneous forearm of 19 healthy participants. Two of the sites were pre-treated with the alpha(1)-antagonist terazosin, to determine whether the effect of phenylephrine was mediated by alpha(1)-adrenoceptors. Terazosin was administered before the burn injury at one site, and after the burn injury at the other site. ⋯ However, neither alpha(2)-adrenoceptor stimulation nor blockade affected sensitivity to heat in the mildly burnt skin. These findings suggest that stimulation of cutaneous alpha(1)-adrenoceptors increased the excitability of heat-sensitized nociceptive afferents. As terazosin was more effective when administered in burnt skin, an inflammatory response induced by the burn injury may have facilitated access of adrenergic agents to alpha(1)-adrenoceptors.