Articles: hyperalgesia.
-
We have developed a model in which inflammation contiguous to and within a dorsal root ganglion (DRG) was generated by local application of complete Freund's adjuvant (CFA) to the L4 lumbar spinal nerve as it exits from the intervertebral foramen. The periganglionic inflammation (PGI) elicited a marked reduction in withdrawal threshold to mechanical stimuli and an increase in heat pain sensitivity in the ipsilateral hindpaw in the absence of any hindpaw inflammation. The pain sensitivity appeared within hours and lasted for a week. ⋯ We also show that IL-1beta induces COX-2 expression and prostaglandin release in DRG neurons in vitro in a MAP kinase-dependent fashion. The COX-2 induction was prevented by ERK and p38 inhibitors. We conclude that periganglionic inflammation increases cytokine levels, including IL-1beta, leading to the transcription of COX-2 and prostaglandin production in the affected DRG, and thereby to the development of a dermatomally distributed pain hypersensitivity.
-
Hydrogen sulfide (H2S), a gasotransmitter, facilitates membrane currents through T-type Ca2+ channels, and intraplantar (i.pl.) administration of NaHS, a donor of H2S, causes prompt hyperalgesia in rats. In this context, we asked whether intrathecal (i.t.) administration of NaHS could mimic the hyperalgesic effect of i.pl. NaHS in rats, and then examined if Cav3.2 isoform of T-type Ca2+ channels contributed to the pro-nociceptive effects of i.t. and i.pl. ⋯ Repeated i.t. administration of antisense oligodeoxynucleotides (ODNs) targeting rat Cav3.2, but not mismatch ODNs, caused silencing of Cav3.2 protein in the dorsal root ganglia and spinal cord, and then attenuated the hyperalgesia induced by either i.t. or i.pl. NaHS. Our findings thus establish that spinal and peripheral NaHS/H2S activates or sensitizes Cav3.2 T-type Ca2+ channels expressed in the primary afferents and/or spinal nociceptive neurons, leading to sensitization of nociceptive processing and hyperalgesia.
-
The behavioural noxious heat threshold i.e. the lowest temperature evoking nocifensive behaviour was previously shown to decrease in short-lasting, but not in sustained, inflammatory thermal hyperalgesias. The aim of this study was to examine whether the surgical incision-induced lasting heat hyperalgesia involves a drop of the heat threshold and to assess the effects of conventional opioid and non-opioid analgesics in this model. One of the hind paws of rats was immersed into a water bath whose temperature was near-linearly increased from 30 degrees C until the animal withdrew its paw from the water. ⋯ Thermal hyperalgesia was also decreased by intraplantar treatment with morphine (10 microg) or diclofenac (100 microg). In conclusion, the incision-induced sustained thermal hyperalgesia in rats involves a drop of the heat threshold suggesting that mechanisms of postsurgical pain are distinct from those of pure inflammatory pain. The thermal antihyperalgesic actions of systemically and/or locally applied morphine, diclofenac and paracetamol could be detected with high temporal resolution and sensitivity in this model.
-
Indian J. Exp. Biol. · Mar 2009
Anti-nociceptive effect of duloxetine in mouse model of diabetic neuropathic pain.
The involvement of adenosinergic pathway in the anti-nociceptive effect of duloxetine, a balanced 5-HT/NE reuptake inhibitor, was evaluated in streptozotocin induced diabetic male albino mice of Laca strain. After four weeks of single injection of streptozotocin (200 mg/kg, ip), mice were tested in the tail immersion and hot-plate assays. Cerebral adenosine levels were measured by high-performance liquid chromatography (HPLC/PDA detector). ⋯ Administration of duloxetine (5, 10 and 20 mg/kg, ip) to diabetic mice produced dose-dependent anti-nociceptive effect in both tail-immersion and hot-plate assays. Adenosine levels were also significantly and dose-dependently increased by different doses of duloxetine. The results demonstrated the involvement of adenosinergic pathway in duloxetine mediated anti-hyperalgesia in diabetic neuropathic pain.
-
Cisplatin has been in use for 40 years for treatment of germ line and other forms of cancer. Oxaliplatin is approved for treatment of metastatic colorectal cancer. Thirty to forty percent of cancer patients receiving these agents develop pain and sensory loss. Oxaliplatin induces distinctive cold-associated dysesthesias in up to 80% of patients. ⋯ We have therefore established a model of platinum drug-induced painful peripheral neuropathy that reflects the differences in early thermal pain responses that are observed in patients treated with either cisplatin or oxaliplatin. This model should be useful in studying the molecular basis for these different pain responses and in designing protective therapeutic strategies.