Articles: hyperalgesia.
-
We examined the effect of the opioid receptor agonists and the effect of an antioxidant selol, which is an organoselenium compound on antinociceptive action of opioid agonists in diabetic neuropathic pain model. Streptozotocin (STZ) induced hyperglycemia accompanied by a prolonged decrease in nociceptive threshold is considered a useful model of experimental hyperalgesia. ⋯ Pretreatment with selol markedly enhanced the analgesic activity of all three investigated opioids. Concomitant administration of selol and opioids in alleviation of neoplastic pains seems to be justified.
-
Comparative Study
The role of heterosynaptic facilitation in long-term potentiation (LTP) of human pain sensation.
Long-term potentiation (LTP) of nociceptive synaptic transmission induced by high-frequency electrical stimulation (HFS) predominantly modulates natural somatosensory perceptions mediated by Adelta- and Abeta-fibers in humans at the site of conditioning stimulation. The relative contribution of homo- and heterosynaptic mechanisms underlying those perceptual changes remained unclear. We therefore compared changes of the somatosensory profile between a conditioned skin site (homotopic zone) and an area adjacent to conditioning HFS (heterotopic zone). ⋯ Moreover, a small decrease of thresholds to blunt pressure was found at both zones (p<0.05). Pain summation (windup ratio), mechanical detection threshold as well as vibration detection threshold remained unchanged. Because none of the changes in sensory parameters was unique for the site of conditioning stimulation, these data suggest that heterosynaptic interactions are the predominant mechanism of LTP in nociceptive pathways.
-
Comparative Study
Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms.
Fast Inhibitory controls mediated by glycine (GlyRs) and GABAA receptors (GABAARs) play an important role to prevent the apparition of pathological pain symptoms of allodynia and hyperalgesia. The use of positive allosteric modulators of these receptors, specifically expressed in the spinal cord, may represent an interesting strategy to limit or block pain expression. In this study, we have used stereoisomers of progesterone metabolites, acting only via non-genomic effects, in order to evaluate the contribution of GlyRs and GABAARs for the reduction of mechanical and thermal heat hypernociception. ⋯ We clearly show that 3alpha5beta neurosteroid exerts an antinociceptive effect via a positive allosteric modulation of GABAARs but, at the same time, is pronociceptive by reducing GlyR function. This illustrates the importance of the inhibitory amino acid receptor channels and their allosteric modulators in spinal pain processing. Moreover, our results indicate that neurosteroids, which are synthesized in the dorsal horn of the spinal cord and have limited side effects, may be of significant interest in order to treat pathological pain symptoms.
-
Palmitoylethanolamide (PEA) is an endogenous lipid that is thought to be involved in endogenous protective mechanisms activated as a result of stimulation of inflammatory response. In spite of the well demonstrated anti-inflammatory properties of PEA, its involvement in controlling pain pathways still remains poorly characterized. On this basis, we tested the efficacy of PEA in vivo against a peculiar persistent pain, such as neuropathic one. ⋯ The results indicated that CB(1), PPARgamma and TRPV1 receptors mediated the antinociception induced by PEA, suggesting that the most likely mechanism might be the so-called "entourage effect" due to the PEA-induced inhibition of the enzyme catalyzing the endocannabinoid anandamide (AEA) degradation that leads to an enhancement of its tissue levels thus increasing its analgesic action. In addition, the hypothesis that PEA might act through the modulation of local mast cells degranulation is sustained by our findings showing that PEA significantly reduced the production of many mediators such as TNFalpha and neurotrophic factors, like NGF. The findings presented here, in addition to prove the beneficial effects of PEA in chronic pain, identify new potential targets for analgesic medicine.
-
EphBs receptors and ephrinBs ligands are present in the adult brain and peripheral tissue and play a critical role in modulating multiple aspects of physiology and pathophysiology. Ours and other studies have demonstrated that spinal ephrinBs/EphBs signaling was involved in the modulation of nociceptive information and central sensitization. However, the role of ephrinBs/EphBs signaling in peripheral sensitization is poorly understood. ⋯ EphrinB1-Fc-induced hyperalgesia is accompanied with the NMDA receptor-mediated increase of expression in peripheral and spinal phosphorylated mitogen-activated protein kinases (phospho-MAPKs) including p-p38, pERK and pJNK, and also is prevented or reversed by the inhibition of peripheral and spinal MAPKs. Furthermore, in formalin inflammation pain model, pre-inhibition of EphBs receptors by the injection of EphB1-Fc reduces pain behavior, which is accompanied by the decreased expression of peripheral p-p38, pERK and pJNK. These data provide evidence that ephrinBs may act as a prominent contributor to peripheral sensitization, and demonstrate that activation of peripheral ephrinBs/EphBs system induces hyperalgesia through a MAPKs-mediated mechanism.