Articles: hyperalgesia.
-
Randomized Controlled Trial
The initial effects of knee joint mobilization on osteoarthritic hyperalgesia.
Physiotherapists often employ lower limb joint mobilization to reduce pain and increase function. However, there is little experimental data confirming its efficacy. The purpose of this study was to investigate the initial effects of accessory knee joint mobilization on measures of pain and function in individuals with knee osteoarthritis. ⋯ Knee joint mobilization also increased PPT at a distal, non-painful site and reduced 'up and go' time significantly more (-5% (-9.3 to 0.8)) than manual contact (-0.4% (-4.2 to 3.5)) or no-contact control (+7.9% (2.6-13.2)) interventions. This study therefore provides new experimental evidence that accessory mobilization of an osteoarthritic knee joint immediately produces both local and widespread hypoalgesic effects. It may therefore be an effective means of reducing pain in this population.
-
Neck and shoulder pain is a common disorder which is often associated with a low-pressure pain threshold (PPT) of muscle tissues as manifested by hyperalgesia on palpation or the use of a pressure algometer. The objective of the present study was to evaluate the intratester repeatability of pressure algometer (Force-Five) on the neck and shoulder area in women with neck pain. The study was cross-sectional with single-group repeated measurements. ⋯ Considerable individual variation was observed when consecutive measures were analysed against their mean. On the group level the repeatability of the measurements allows the pressure algometer to be used for research purposes. However, on the individual level, due to the considerable variation found in the PPT results, caution is advised when interpreting the results in clinical practice.
-
Some chronic painful conditions including e.g. fibromyalgia, whiplash associated disorders, endometriosis, and irritable bowel syndrome are associated with generalized musculoskeletal hyperalgesia. The aim of the present study was to determine whether generalized deep-tissue hyperalgesia could be demonstrated in a group of patients with chronic low-back pain with intervertebral disc herniation. Twelve patients with MRI confirmed lumbar intervertebral disc herniation and 12 age and sex matched controls were included. ⋯ The patients rated significantly higher pain intensity to supra-threshold mechanical pressure stimulation in both muscles. In patients, the pressure pain-threshold was lower in the anterior tibialis muscle compared to controls. In conclusion, generalized deep-tissue hyperalgesia was demonstrated in chronic low-back pain patients with radiating pain and MRI confirmed intervertebral disc herniation, suggesting that this central sensitization should also be addressed in the pain management regimes.
-
Pregabalin is used for treatment of neuropathic pain conditions. The present study evaluated effects of pregabalin in 2 rat models of muscle-induced hyperalgesia: Inflammatory and noninflammatory. Muscle hyperalgesia (withdrawal threshold to compression of the muscle) and cutaneous hyperalgesia of the paw (withdrawal threshold to von Frey filaments) were measured before and after induction of hyperalgesia and after treatment with pregabalin (saline, 10 to 100 mg/kg i.p.). In the inflammatory model, 3% carrageenan injected into 1 gastrocnemius muscle decreased the mechanical withdrawal threshold of the paw bilaterally and the compression withdrawal threshold of the muscle ipsilaterally 2 weeks later. Pregabalin (10 to 100 mg/kg) increased the compression withdrawal threshold of the inflamed muscle when compared with vehicle controls. Pregabalin also increased the mechanical withdrawal threshold of the paw bilaterally, but only with 100 mg/kg. In the noninflammatory model, 2 unilateral injections of acidic saline into the gastrocnemius muscle produced bilateral cutaneous and muscle hyperalgesia 24 hours after the second injection. Pregabalin (10 to 100 mg/kg i.p.) significantly increased the compression withdrawal thresholds of the muscle and the mechanical withdrawal threshold of the paw bilaterally when compared with vehicle. However, pregabalin also has significant motor effects at the higher doses (60 to 100 mg/kg). Therefore, pregabalin reduces both muscle and cutaneous hyperalgesia that occurs after muscle insult in 2 animal models of muscle pain at doses that do not produce ataxia. ⋯ This study shows that pregabalin reduces both cutaneous and muscle hyperalgesia in inflammatory and noninflammatory models of muscle pain. Thus, pregabalin may be an effective treatment for people with chronic muscle pain.