Articles: hyperalgesia.
-
Neurobiology of disease · Nov 2006
Mechanical hyperalgesia correlates with insulin deficiency in normoglycemic streptozotocin-treated rats.
The triggers and pathogenesis of peripheral diabetic neuropathy are poorly understood, and this study evaluated the role of insulinopenia in nociceptive abnormalities in the streptozotocin (STZ) rat model of diabetes to test the hypothesis that, in addition to hyperglycemia, impairment of insulin signaling may be involved in progression of neuropathy. We measured blood glucose, plasma insulin, and sciatic nerve glucose and sorbitol levels, and withdrawal thresholds for hind limb pressure pain and heat pain in STZ-injected rats that developed hyperglycemia or remained normoglycemic. ⋯ These pain thresholds did not correlate with blood or nerve glucose or sorbitol levels, but both correlated with plasma insulin level in STZ-normoglycemic rats, and low-dose insulin replacement normalized the pressure threshold without affecting blood glucose level. Thus, at least one of early signs of diabetic neuropathy in STZ-treated rats, mechanical hyperalgesia, can be triggered by moderate insulinopenia, irrespective of glycemic status of the animals.
-
Bone disorders with increased osteoclastic bone resorption are frequently associated with bone pain and inhibitors of osteoclasts reduce bone pain. Osteoclasts degrade bone minerals by secreting protons through the vacuolar H+-ATPase, creating acidic microenvironments. Because acidosis is a well-known cause of pain, we reasoned that osteoclasts cause pain through proton secretion. ⋯ Moreover, F-11 cells transfected with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1) showed increased acid-induced nuclear c-Fos expression compared with parental F-11 cells. Finally, bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, reversed the hyperalgesia and down-regulated ASIC1a mRNA expression in the DRGs. These results led us to propose that osteoclasts play a part in CFA-induced inflammatory pain through an activation of the acid-sensing receptors including ASICs and TRPV1 by creating acidosis.
-
Spinally released dynorphin contributes to hypersensitivity from nerve injury, inflammation, and sustained morphine treatment, but its role in post-operative pain has not been tested. Intrathecal injection of dynorphin activates cyclooxygenase (COX)-1 and -2 to induce hypersensitivity. Spinal COX-1 expression and activity increase following incisional paw surgery in rats, although the stimulus for this increase is not known. ⋯ Spinal cord microglia in culture expressed COX-1 immunoreactivity and released PGE2, but dynorphin A failed to increase release of PGE2 in these cultures. These results suggest that increased COX-1 expression occurs in spinal cord microglia following incisional surgery. Although prodynorphin immunoreactivity also increases, it likely does not drive COX-1 expression or mechanical hypersensitivity in this setting.
-
Fertility and sterility · Nov 2006
Clinical TrialPain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis.
To detect and quantify mast cells in peritoneal, ovarian, and deep infiltrating endometriosis and to study the relationship between mast cells and nerves in endometriosis. ⋯ The presence of increased activated and degranulating mast cells in deeply infiltrating endometriosis, which are the most painful lesions, and the close histological relationship between mast cells and nerves strongly suggest that mast cells could contribute to the development of pain and hyperalgesia in endometriosis, possibly by a direct effect on nerve structures.
-
Mechanisms of chronic pain, including neuropathic pain, are poorly understood. Upregulation of voltage-gated calcium channel (VGCC) alpha2delta1 subunit (Ca(v)alpha2delta1) in sensory neurons and dorsal spinal cord by peripheral nerve injury has been suggested to contribute to neuropathic pain. To investigate the mechanisms without the influence of other injury factors, we have created transgenic mice that constitutively overexpress Ca(v)alpha2delta1 in neuronal tissues. ⋯ In addition, gabapentin blocked VGCC currents concentration-dependently in transgenic, but not wild-type, sensory neurons. Thus, elevated neuronal Ca(v)alpha2delta1 contributes to specific pain states through a mechanism mediated at least partially by enhanced VGCC activity in sensory neurons and hyperexcitability in dorsal horn neurons in response to peripheral stimulation. Modulation of enhanced VGCC activity by gabapentin may underlie at least partially its antihyperalgesic actions.