Articles: hyperalgesia.
-
The endogenous metabolite methylglyoxal (MG) accumulates in diabetic patients with neuropathic pain. Methylglyoxal could be a mediator of diabetes-induced neuropathic pain through TRPA1 activation and sensitization of the voltage-gated sodium channel subtype 1.8. In this study, we tested the algogenic and sensitizing effect of MG in healthy human subjects using intracutaneous microinjections. ⋯ A fibers contribute only negligibly to the burning pain sensation. Selective pharmacological blockade of TRPA1 or TRPV1 showed that TRPA1 is crucially involved in MG-induced chemical pain sensation and heat hyperalgesia. In conclusion, the actions of MG through TRPA1 activation on predominantly mechano-insensitive C fibers might be involved in spontaneously perceived pain in diabetic neuropathy and hyperalgesia as well as allodynia.
-
Topical capsaicin is commonly employed to experimentally induce central sensitization (CS) in humans. While previous studies have investigated the effect of skin preheating on the sensitizing effect of capsaicin, no studies have compared the synergistic effect of skin preheating on the magnitude of sensitization via topical capsaicin within the first 30 minutes of application. We tested the hypothesis that skin preheating potentiates the sensitizing effect of topical capsaicin by evoking a larger region of secondary hyperalgesia vs. topical capsaicin alone. ⋯ Preheating amplifies the sensitizing effect of topical capsaicin within 30 minutes of application. The heat-capsaicin technique may be employed to assess differing magnitudes of CS induction and enables future studies investigating the development and progression of CS in humans.
-
We report the development and characterization of a novel, injury-free rat model in which nociceptive sensitization after red light is observed in multiple body areas reminiscent of widespread pain in functional pain syndromes. Rats were exposed to red light-emitting diodes (RLED) (LEDs, 660 nm) at an intensity of 50 Lux for 8 hours daily for 5 days resulting in time- and dose-dependent thermal hyperalgesia and mechanical allodynia in both male and female rats. Females showed an earlier onset of mechanical allodynia than males. ⋯ PERSPECTIVE: This study demonstrates the effect of light exposure on nociceptive thresholds. These biological effects of red LED add evidence to the emerging understanding of the biological effects of light of different colors in animals and humans. Understanding the underlying biology of red light-induced widespread pain may offer insights into functional pain states.
-
Delayed onset muscle soreness (DOMS) is characterized by mechanical hyperalgesia after lengthening contractions (LC). It is relatively common and causes disturbance for many people who require continuous exercise, yet its molecular and peripheral neural mechanisms are poorly understood. ⋯ Here, we show that not only C- but also Aδ-fibre nociceptors in the muscle are involved in mechanical hypersensitivity after lengthening contractions, and that acid-sensing ion channel (ASIC)-3 expressed in the thin-fibre nociceptors is responsible for the mechanical hypersensitivity. ASIC3 might be a novel pharmacological target for pain after exercise.
-
Cutaneous mechanical hyperalgesia can be induced in healthy volunteers in early phase analgesic studies to model central sensitization, a key mechanism of persistent pain. However, such hyperalgesia is short-lived (a matter of hours), and is used only for assessing only single drug doses. In contrast, postsurgical peri-incisional hyperalgesia may be more persistent and hence be a more useful model for the assessment of the efficacy of new analgesics. ⋯ The findings suggest that central sensitization contributes significantly to mechanical hyperalgesia at the peri-incisional site. The prolonged duration of hyperalgesia would be advantageous as a pain model, but there was considerable variability of mechanical hyperalgesia in the cohort; the challenges of recruitment may limit its use to small, early phase analgesic studies. PERSPECTIVE: Peri-incisional mechanical hyperalgesia persists for ≥4 weeks after open inguinal hernia repair and reflects central sensitization; this may have usefulness as a model of chronic pain to assess the potential of antineuropathic analgesics.