Articles: hyperalgesia.
-
Irritable bowel syndrome patients frequently complain of pain in body regions somatotopically distinct from the gut, suggesting the involvement of an exaggerated signaling process in both visceral and somatic sensory pathways. Increasing evidence has shown that sprouting of tyrosine hydroxylase immunoreactive (TH-IR) fibers toward sensory neurons in dorsal root ganglia maintains and exacerbates the neuropathic and inflammatory pain, as well as colonic inflammation. The aim of the present study was to determine whether electroacupuncture could alleviate the visceral and secondary somatic hyperalgesia in colitis rats by suppressing the TH-IR expression in related dorsal root ganglia. ⋯ Both electroacupuncture and guanethidine attenuated visceral and referred hind paw hyperalgesia by inhibiting the over-expression of TH-IR neurons and fibers in the sixth lumbar dorsal root ganglia. Moreover local inflammatory damage in the distal colon was restored after 7 days of electroacupuncture intervention. These results suggest that electroacupuncture relieved visceral and referred hind paw hypersensitivity in colitis rats by inhibiting TH expression in the sixth lumbar dorsal root ganglia.
-
Anesthesia and analgesia · Oct 2019
The GCs-SGK1-ATP Signaling Pathway in Spinal Astrocytes Underlied Presurgical Anxiety-Induced Postsurgical Hyperalgesia.
Patients undergoing surgery often feel anxious. Accumulating evidence indicated that presurgical anxiety was related to the more severe postsurgical pain. An animal model was established that exposed Sprague-Dawley rats to a single-prolonged stress (SPS) procedure to induce presurgical anxiety-like behaviors. The experiment revealed that presurgical anxiety not only aggravated but also prolonged postsurgical pain. However, the underlying mechanisms were unknown. ⋯ These data suggested an important signaling pathway that affected the pain sensitivity after operation caused by presurgical anxiety.
-
Experimental neurology · Oct 2019
Enhanced descending pain facilitation in acute traumatic brain injury.
Acute and persistent pain are recognized consequences of TBI that can enhance suffering and significantly impair rehabilitative efforts. Both experimental models and clinical studies suggest that TBI may result in an imbalance between descending pain facilitatory and inhibitory pathways. The aim of this study was to assess the role of enhanced descending serotonin-mediated pain facilitation in a rat TBI model using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine (DHT). ⋯ Additional immunohistochemical analyses of the lumbar spinal cord at 7 DPI revealed a robust bilateral microglial response in the superficial dorsal horns that was significantly reduced with DHT treatment. Furthermore, serotonin depletion also prevented the TBI-induced bilateral increase in c-Fos positive cells within the Rexed laminae I and II of the dorsal horns. These results indicate that in the weeks following TBI, pain may be responsive to 5-HT3 receptor antagonists or other measures which rebalance descending pain modulation.
-
There is an ethical obligation to notify individuals about potential pain associated with diagnoses, treatments, and procedures; however, supplying this information risks inducing nocebo hyperalgesia. Currently, there are few empirically derived strategies for reducing nocebo hyperalgesia. Because nocebo effects are linked to negative affectivity, we tested the hypothesis that a positive-affect induction can disrupt nocebo hyperalgesia from verbal suggestion. ⋯ In the neutral-affect conditions, there was evidence for the nocebo hyperalgesia effect: participants given the suggestion of pain displayed greater pain than participants not receiving this suggestion, P's < 0.05. Demonstrating a blockage effect, nocebo hyperalgesia did not occur in the positive-affect conditions, P's > 0.5. This is the first study to show that positive affect may disrupt nocebo hyperalgesia thereby pointing to a novel strategy for decreasing nocebo effects without compromising the communication of medical information to patients in clinical settings.
-
Int. Immunopharmacol. · Oct 2019
Nrf2/HO-1 signaling pathway participated in the protection of hydrogen sulfide on neuropathic pain in rats.
Neuropathic pain is evoked by aberrant sensory processing in the peripheral or central nervous system, which is characterized by persistent pain, tactile allodynia, or hyperalgesia. Neuroinflammation is associated with the initiation and maintenance of persistent pain in both the peripheral and central nervous systems. Hydrogen sulfide plays important regulatory roles in different physiological and pathological conditions. ⋯ Mechanical allodynia, thermal hyperalgesia and the number of paw lifts were measured at different time points after operation. In the present research, neuropathic pain induced Nrf2 and HO-1 expression in the microglial cells of the spinal cord; Nrf2 and HO-1 were necessary to alleviate the hyperalgesia of CCI-induced rats; NaHS mitigated the hyperalgesia and allodynia induced by the CCI operation; and NaHS mitigated the excessive release of the cytokines TNF-α, IL-1β, IL-6 and HMGB1 via the Nrf2/HO-1 pathway in the microglial cells of the spinal cord. These results indicated that NaHS exhibited antinociceptive and anti-inflammatory effects that were associated with the activation of the Nrf2/HO-1 pathway in the spinal cord of rats with neuropathic pain.