Articles: hyperalgesia.
-
Randomized Controlled Trial Clinical Trial
Heat, but not mechanical hyperalgesia, following adrenergic injections in normal human skin.
The development of adrenergic sensitivity in nociceptors has been suggested as a mechanism of neuropathic pain. We sought to determine if nociceptors in the skin of normal subjects exhibit adrenergic sensitivity. We investigated the effects of intradermal administration of norepinephrine, phenylephrine, and brimonidine on heat pain sensitivity. ⋯ In addition, occlusion of blood flow with a blood pressure cuff did not lead to heat hyperalgesia. Thus, the heat hyperalgesia observed with the adrenergic agonists is not due to a decrease in perfusion associated with the injection. These results indicate that alpha(1)- and alpha(2)-adrenoceptor-mediated mechanisms may play a role in sensitization of nociceptors to heat stimuli in normal skin.
-
To assess the involvement of spinal inducible nitric oxide synthase (iNOS) in inflammation and nociception. ⋯ The results show that iNOS is upregulated in the inflamed tissue and spinal cord with a similar time course. The effects obtained with L-NIL suggest that iNOS differently contributes to the inflammatory and nociceptive response induced by zymosan.
-
Randomized Controlled Trial Clinical Trial
Dextromethorphan attenuation of postoperative pain and primary and secondary thermal hyperalgesia.
To determine the effect of 90 mg dextromethorphan (DM) p.o. vs placebo 90 min preoperatively, on the immediate and delayed postoperative course. ⋯ Compared with placebo, DM enabled reduction of postoperative analgesics consumption, improved well-being, and reduced sedation, pain intensity and primary and secondary thermal hyperalgesia.
-
To evaluate the roles of spinal neurokinin receptors in the development of persistent nociception and hyperalgesia to thermal and mechanical stimuli induced by subcutaneous (s.c.) bee venom injection, effects of intrathecal (i.t.) pre- or post-treatment with a non-selective antagonist of (NK1/2) receptors, [D-Arg1,D-Trp7,9,Leu11] substance P (spantide), and a selective NK3 receptor antagonist, (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl) piperidin-3-yl)propyl)-4-phenylpiperidin-4-yl)-N-methyl acetamide (SR142801) were assessed in conscious rat. Injection of bee venom s.c. into the plantar surface of one hind paw resulted in a pathological pain phenomenon characterized by a 1-2 h single phase of persistent spontaneous nociceptive behaviors (continuously flinching the injected paw) and a 72-96 h profound primary thermal and mechanical hyperalgesia in the injection site and a secondary thermal hyperalgesia in the non-injected hindpaw. Pre-treatment with spantide i.t. at 0.05 microg, 0.5 microg and 5 microg produced a dose-related suppression of the bee venom-induced flinching reflex during the whole time course and the inhibitory rate was 24 +/- 12.60% (35.38 +/- 4.12 flinches/5 min, n=5), 48 +/- 6.75% (24.53 +/- 2.90 flinches/5 min, n=5) and 60 +/- 7.69% (18.88 +/- 3.58 flinches/5 min, n=5) respectively when compared with the saline control group (46.80 +/- 2.60 flinches/5 min, n=5). ⋯ Pre and post-treatment of SR142801 did not produce any significant effect on the bee venom-induced spontaneous pain and thermal and mechanical hyperalgesia. Our present result suggests that activation of spinal NK1/2 receptors is involved in both induction and maintenance of the persistent spontaneous nociception, while it is only involved in induction of the primary and secondary thermal, but not primary mechanical hyperalgesia induced by s.c. bee venom injection. The spinal NK3 receptor seems not likely to be involved in the bee venom-induced behavioral response characterized by spontaneous pain and thermal and mechanical hyperalgesia.
-
Pretreatment with intraperitoneal (i.p.) indomethacin was used to determine whether indomethacin preferentially affected the development of edema and hyperalgesia to thermal and mechanical stimuli produced by injection of zymosan in the ispsilateral hindpaw of the rat. Indomethacin also was delivered intrathecally (i.t.) either 30 minutes before or 4 hours after intraplantar zymosan to determine whether spinal prostaglandin production was important for the induction and/or maintenance of hyperalgesia. Zymosan alone produced a robust edema, a monophasic mechanical hyperalgesia, and a biphasic thermal hyperalgesia in the ipsilateral hindpaw. ⋯ Once hyperalgesia was established, i.t. indomethacin also attenuated the mechanical hyperalgesia whereas it had no effect on thermal hyperalgesia or edema. These data suggest that peripheral, but not spinal prostaglandins contribute to the edema and development of thermal hyperalgesia produced by zymosan. In contrast, spinal prostaglandins contribute to the development and maintenance of mechanical hyperalgesia.