Articles: coronavirus.
-
Journal of virology · Jul 2014
Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies.
The recently discovered Middle East respiratory syndrome coronavirus (MERS-CoV) continues to infect humans, with high mortality. Specific, highly effective therapeutics and vaccines against the MERS-CoV are urgently needed to save human lives and address the pandemic concerns. We identified three human monoclonal antibodies (MAbs), m336, m337, and m338, targeting the receptor (CD26/DPP4) binding domain (RBD) of the MERS-CoV spike glycoprotein from a very large naïve-antibody library (containing ∼10(11) antibodies). ⋯ We report here the identification of human monoclonal antibodies (MAbs) from a large nonimmune antibody library that target MERS-CoV. One of the antibodies, m336, neutralized the virus with exceptional potency. It therefore may have great potential as a candidate therapeutic and as a reagent to facilitate the development of vaccines against MERS-CoV.
-
We describe the isolation and sequencing of Middle East respiratory syndrome coronavirus (MERS-CoV) obtained from a dromedary camel and from a patient who died of laboratory-confirmed MERS-CoV infection after close contact with camels that had rhinorrhea. Nasal swabs collected from the patient and from one of his nine camels were positive for MERS-CoV RNA. ⋯ Serologic data indicated that MERS-CoV was circulating in the camels but not in the patient before the human infection occurred. These data suggest that this fatal case of human MERS-CoV infection was transmitted through close contact with an infected camel.
-
The emergence of the novel Middle East (ME) respiratory syndrome coronavirus (MERS-CoV) has raised global public health concerns regarding the current situation and its future evolution. Here we propose an integrative maximum likelihood analysis of both cluster data in the ME and importations in a set of European countries to assess the transmission scenario and incidence of sporadic infections. Our approach is based on a spatial-transmission model integrating mobility data worldwide and allows for variations in the zoonotic/environmental transmission and under-ascertainment. ⋯ No time evolution of the situation emerges. Analyses of flight passenger data from ME countries indicate areas at high risk of importation. While dismissing an immediate threat for global health security, this analysis provides a baseline scenario for future reference and updates, suggests reinforced surveillance to limit under-ascertainment, and calls for alertness in high importation risk areas worldwide.