Articles: coronavirus.
-
To date, non-pharmacological interventions (NPI) have been the mainstay for controlling the coronavirus disease-2019 (COVID-19) pandemic. While NPIs are effective in preventing health systems overload, these long-term measures are likely to have significant adverse economic consequences. Therefore, many countries are currently considering to lift the NPIs-increasing the likelihood of disease resurgence. In this regard, dynamic NPIs, with intervals of relaxed social distancing, may provide a more suitable alternative. ⋯ This multi-country analysis demonstrates that intermittent reductions of R below 1 through a potential combination of suppression interventions and relaxation can be an effective strategy for COVID-19 pandemic control. Such a "schedule" of social distancing might be particularly relevant to low-income countries, where a single, prolonged suppression intervention is unsustainable. Efficient implementation of dynamic suppression interventions, therefore, confers a pragmatic option to: (1) prevent critical care overload and deaths, (2) gain time to develop preventive and clinical measures, and (3) reduce economic hardship globally.
-
Ann. Clin. Biochem. · May 2020
Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19).
Early studies have reported various electrolyte abnormalities at admission in patients who progress to the severe form of coronavirus disease 2019 (COVID-19). As electrolyte imbalance may not only impact patient care, but provide insight into the pathophysiology of COVID-19, we aimed to analyse all early data reported on electrolytes in COVID-19 patients with and without severe form. ⋯ This pooled analysis confirms that COVID-19 severity is associated with lower serum concentrations of sodium, potassium and calcium. We recommend electrolytes be measured at initial presentation and serially monitored during hospitalization in order to establish timely and appropriate corrective actions.
-
Using electronic health records, we assessed the early impact of coronavirus disease (COVID-19) on routine childhood vaccination in England by 26 April 2020. Measles-mumps-rubella vaccination counts fell from February 2020, and in the 3 weeks after introduction of physical distancing measures were 19.8% lower (95% confidence interval: -20.7 to -18.9) than the same period in 2019, before improving in mid-April. A gradual decline in hexavalent vaccination counts throughout 2020 was not accentuated by physical distancing.
-
Int. J. Antimicrob. Agents · May 2020
Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection.
The recent emergence of the novel pathogenic SARS-coronavirus 2 (SARS-CoV-2) is responsible for a worldwide pandemic. Given the global health emergency, drug repositioning is the most reliable option to design an efficient therapy for infected patients without delay. The first step of the viral replication cycle [i.e. attachment to the surface of respiratory cells, mediated by the spike (S) viral protein] offers several potential therapeutic targets. ⋯ This study showed that, in the presence of CLQ [or its more active derivative, hydroxychloroquine (CLQ-OH)], the viral S protein is no longer able to bind gangliosides. The identification of this new mechanism of action of CLQ and CLQ-OH supports the use of these repositioned drugs to cure patients infected with SARS-CoV-2. The in-silico approaches used in this study might also be used to assess the efficiency of a broad range of repositioned and/or innovative drug candidates before clinical evaluation.