Articles: coronavirus.
-
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. ⋯ The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
-
Frontiers in immunology · Jan 2020
ReviewQuercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19).
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. ⋯ There is evidence that vitamin C and quercetin co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. We present the current evidence for the use of vitamin C and quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma.
-
Background: As 2019 ends coronavirus disease start expanding all over the world. It is highly transmissible disease that can affect respiratory tract and can leads to organ failure. In 2020 it is declared by world health organization as "Public health emergency of international concerns". ⋯ Results: A Deep Neural Network model provides a significant contribution in terms of detecting COVID-19 and provides effective analysis of chest related diseases with respect to age and gender. Our model achieves 89% accuracy in terms of Gan based synthetic data and four different types of deep learning- based models which provided state of the art comparable results. Conclusion: If the gap in identifying of all viral pneumonias is not filled with effective automation of chest disease detection the healthcare industry may have to bear unfavorable circumstances.
-
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), became a pandemic in March 2020, affecting millions of people worldwide. However, COVID-19 in pediatric patients represents 1-5% of all cases, and the risk for developing severe disease and critical illness is much lower in children with COVID-19 than in adults. Multisystem inflammatory syndrome in children (MIS-C), a possible complication of COVID-19, has been described as a hyperinflammatory condition with multiorgan involvement similar to that in Kawasaki disease or toxic shock syndrome in children with evidence of SARS-CoV-2 infection. ⋯ Particular emphasis is placed on respiratory support, which includes noninvasive ventilation and invasive mechanical ventilation strategies according to lung compliance and pattern of lung injury. Pharmacological treatment, including pathogen-targeted drugs and host-directed therapies, has been addressed. The diagnostic criteria and management of MIS-C are also summarized.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a new threat to healthcare systems. In this setting, heart failure units have faced an enormous challenge: taking care of their patients while at the same time avoiding patients' visits to the hospital. ⋯ Our study suggests that implementing an active-surveillance protocol in acutely decompensated heart failure units during the SARS-CoV-2 pandemic can reduce hospital admissions, ER visits and, potentially, viral transmission, in a cohort of especially vulnerable patients.