Articles: chronic.
-
COPD is a condition characterized by chronic airflow obstruction resulting from chronic bronchitis, emphysema, or both. The clinical picture is usually progressive with respiratory symptoms such as exertional dyspnea and chronic cough. ⋯ These imaging methods may allow prognostication of disease and shed light on the efficacy of pharmacologic and nonpharmacologic interventions. This is the first of a two-part series of articles on the usefulness of imaging methods in COPD, and it highlights useful information that clinicians can obtain from these imaging studies to make more accurate diagnosis and therapeutic decisions.
-
Individuals with cough hypersensitivity have increased central neural responses to tussive stimuli, which may result in maladaptive morphometric changes in the central cough processing systems. ⋯ The Netherlands National Trial Registry (NTR; www.trialregister.nl) and the World Health Organization's International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under the joint catalogue number NTR6831.
-
Chronic pain is a significant health problem associated with disability and reduced quality of life. Current management of chronic pain is inadequate with only modest effects of pharmacological interventions. Thus, there is a need for the generation of analgesics for treating chronic pain. ⋯ Sustained release of SARM, from the microparticle formulation, was observed both in vitro and in vivo for 4 weeks. Selective androgen receptor modulator treatment produced no cardiac or liver toxicity and did not produce rewarding behaviors. These studies demonstrate that SARM-loaded microparticles, which release drug for a sustained period, alleviate muscle pain, are safe, and may serve as a potential therapeutic for chronic muscle pain.
-
Targeting the vascular endothelial growth factor A/neuropilin 1 axis for relief of neuropathic pain.
Vascular endothelial growth factor A (VEGF-A) is a pronociceptive factor that causes neuronal sensitization and pain. We reported that blocking the interaction between the membrane receptor neuropilin 1 (NRP1) and VEGF-A-blocked VEGF-A-mediated sensory neuron hyperexcitability and reduced mechanical hypersensitivity in a rodent chronic neuropathic pain model. These findings identified the NRP1-VEGF-A signaling axis for therapeutic targeting of chronic pain. ⋯ In rats with spared nerve injury-induced neuropathic pain, intrathecal administration of NRP1-4 significantly attenuated mechanical allodynia. Intravenous treatment with NRP1-4 reversed both mechanical allodynia and thermal hyperalgesia in rats with L5/L6 spinal nerve ligation-induced neuropathic pain. Collectively, our findings show that NRP1-4 is a first-in-class compound targeting the NRP1-VEGF-A signaling axis to control voltage-gated ion channel function, neuronal excitability, and synaptic activity that curb chronic pain.