Articles: chronic.
-
Chronic posttraumatic pain (CPTP) is common after traumatic stress exposure (TSE) and disproportionately burdens women. We previously showed across 3 independent longitudinal cohort studies that, in women, increased peritraumatic 17β-estradiol (E2) levels were associated with substantially lower CPTP over 1 year. Here, we assessed this relationship in a fourth longitudinal cohort and also assessed the relationship between E2 and CPTP at additional time points post-TSE. ⋯ In conclusion, peritraumatic E2 levels, but not those at post-TSE time points, predict CPTP in women TSE survivors. Administration of E2 immediately post TSE protects against mechanical hypersensitivity in female rats. Together with previous findings, these data indicate that increased peritraumatic E2 levels in women have protective effects against CPTP development and suggest that immediate post-TSE E2 administration in women could be a promising therapeutic strategy for reducing risk of CPTP.
-
People experiencing kinesiophobia are more likely to develop persistent disabilities and chronic pain. However, the impact of kinesiophobia on the motor system remains poorly understood. We investigated whether kinesiophobia could modulate shoulder pain-induced changes in (1) kinematic parameters and muscle activation during functional movement and (2) corticospinal excitability. ⋯ Results revealed that pain reduced shoulder electromyographic activity and had a variable effect on finger kinematics, with individuals with higher kinesiophobia showing greater reduction in finger target traveled distance. Kinesiophobia scores were also correlated with the changes in deltoid corticospinal excitability, suggesting that the latter can influence motor activity as soon as the motor signal emerges. Taken together, these results suggest that pain and kinesiophobia interact with motor control adaptation.
-
The development, evaluation and implementation of digital self-management interventions for chronic pain have increased exponentially. While intervention outcomes appear promising to improve well-being and functioning in target populations, it is unclear how the development and evaluation processes were structured and how implementation was planned and executed. The aim of this systematic review is to provide a comprehensive overview of implementation frameworks used to guide and evaluate scientific innovation in chronic pain. ⋯ The use of implementation frameworks to guide and evaluate digital self-management interventions for chronic pain is a recent development in the field. Several promising examples exist and are presented in this review. Currently, the evidence is still limited, and prospective studies need to transparently operationalize, communicate and discuss their efforts. By utilizing an implementation framework, promising interventions can be made available to end-users, closing the research-to-clinical practice gap and increasing access to evidence-based care to people with chronic pain.
-
Randomized Controlled Trial
Characterizing the opioidergic mechanisms of repetitive transcranial magnetic stimulation-induced analgesia: a randomized controlled trial.
Repetitive transcranial magnetic stimulation (rTMS) is a promising technology to reduce chronic pain. Investigating the mechanisms of rTMS analgesia holds the potential to improve treatment efficacy. Using a double-blind and placebo-controlled design at both stimulation and pharmacologic ends, this study investigated the opioidergic mechanisms of rTMS analgesia by abolishing and recovering analgesia in 2 separate stages across brain regions and TMS doses. ⋯ In the DLPFC, double but not the first TMS session induced significant pain reduction in the saline condition, resulting in less pain compared with the naloxone condition. In addition, TMS over the M1 or DLPFC selectively increased plasma concentrations of β-endorphin or encephalin, respectively. Overall, we present causal evidence that opioidergic mechanisms are involved in both M1-induced and DLPFC-rTMS-induced analgesia; however, these are shaped by rTMS dosage and the release of different endogenous opioids.