Articles: covid-19.
-
New York City (NYC) bore the greatest burden of COVID-19 in the United States early in the pandemic. In this case series, we describe characteristics and outcomes of racially and ethnically diverse patients tested for and hospitalized with COVID-19 in New York City's public hospital system. ⋯ This is the largest and most racially/ethnically diverse case series of patients tested and hospitalized for COVID-19 in New York City to date. Our findings highlight disparities in outcomes that can inform prevention and testing recommendations.
-
Frontiers in immunology · Jan 2020
ReviewOverview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past.
After the 1918 flu pandemic, the world is again facing a similar situation. However, the advancement in medical science has made it possible to identify that the novel infectious agent is from the coronavirus family. Rapid genome sequencing by various groups helped in identifying the structure and function of the virus, its immunogenicity in diverse populations, and potential preventive measures. ⋯ A classical immunotherapy of convalescent plasma transfusion from recovered patients has also been initiated for the neutralization of viremia in terminally ill COVID-19 patients. Due to the limitations of plasma transfusion, researchers are now focusing on developing neutralizing antibodies against virus particles along with immuno-modulation of cytokines like IL-6, Type I interferons (IFNs), and TNF-α that could help in combating the infection. This review highlights the similarities of the coronaviruses that caused SARS and MERS to the novel SARS-CoV-2 in relation to their pathogenicity and immunogenicity and also focuses on various treatment strategies that could be employed for curing COVID-19.
-
Neuroimmunomodulation · Jan 2020
ReviewHyperinflammation and Immune Response Generation in COVID-19.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide. The pathophysiology of this virus is not very clearly known, thus, enormous efforts are being made by the scientific community to delineate its evading mechanism. ⋯ The inflammatory response generated after infection by increased proinflammatory cytokines and chemokines, and complement proteins activation may likely contribute to disease severity. We also discussed the other factors that may affect immunity and could be important comorbidities in the disease severity and outcome.
-
Frontiers in microbiology · Jan 2020
ReviewTherapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review.
The novel coronavirus, SARS-CoV-2, or 2019-nCoV, which originated in Wuhan, Hubei province, China in December 2019, is a grave threat to public health worldwide. A total of 3,672,238 confirmed cases of coronavirus disease 2019 (COVID-19) and 254,045 deaths were reported globally up to May 7, 2020. However, approved antiviral agents for the treatment of patients with COVID-19 remain unavailable. ⋯ A combination of repurposed drugs can improve the efficacy of treatment, and structure-based drug design can be employed to specifically target SARS-CoV-2. This review discusses therapeutic strategies using promising antiviral agents against SARS-CoV-2. In addition, structural characterization of potentially therapeutic viral or host cellular targets associated with COVID-19 have been discussed to refine structure-based drug design strategies.
-
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. ⋯ Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.