Articles: function.
-
Am. J. Respir. Crit. Care Med. · Apr 2014
Pseudomonas aeruginosa Type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome.
Pseudomonas aeruginosa, a major problem pathogen responsible for severe infections in critically ill patients, triggers, through a functional type-3 secretion system (T3SS), the activation of an intracellular cytosolic sensor of innate immunity, NLRC4. Although the NLRC4-inflammasome-dependent response contributes to increased clearance of intracellular pathogens, it seems that NLRC4 inflammasome activation decreases the clearance of P. aeruginosa, a mainly extracellular pathogen. ⋯ We report a new role of the T3SS apparatus itself, independently of exotoxin translocation. Through NLRC4 inflammasome activation, the T3SS promotes IL-18 secretion, which dampens a beneficial IL-17-mediated antimicrobial host response.
-
Observational Study
Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series.
Current guidelines for spontaneous intracerebral hemorrhage (ICH) recommend maintaining cerebral perfusion pressure (CPP) between 50 and 70 mmHg, depending on the state of autoregulation. We continuously assessed dynamic cerebral autoregulation and the possibility of determination of an optimal CPP (CPPopt) in ICH patients. Associations between autoregulation, CPPopt and functional outcome were explored. ⋯ Failure of pressure reactivity seems common following severe ICH and is associated with unfavorable outcome. Real-time assessment of CPPopt is feasible in ICH and might provide a tool for an autoregulation-oriented CPP management. A larger trial is needed to explore if a CPPopt management results in better functional outcomes.
-
Comment
Is intra-abdominal hypertension a missing factor that drives multiple organ dysfunction syndrome?
In a recent issue of Critical Care, Cheng and colleagues conducted a rabbit model study that demonstrated that intra-abdominal hypertension (IAH) may damage both gut anatomy and function. With only 6 hours of IAH at 25 mmHg, these authors observed an 80% reduction in mucosal blood flow, an exponential increase in mucosal permeability, and erosion and necrosis of the jejunal villi. Such dramatic findings should remind all caring for the critically ill that IAH may severely damage the normal gut barrier functions and thus may be reasonably expected to facilitate bacterial and mediator translocation. The potential contribution of IAH as a confounding factor in the efficacy of selective decontamination of the digestive tract should be considered.