Articles: function.
-
Decades of efforts in elucidating pain mechanisms, including pharmacological, neuroanatomical, and physiological studies have provided insights into how nociceptive information transmits from the periphery to the brain and the locations receiving nociceptive signals. However, little is known about which specific stimulus-dependent activated neurons, amongst heterogeneous neural environments, discriminatively evoke the cognate pain behavior. We here shed light on the population of neurons in the spinal cord activated by a painful stimulus to identify chronic pain-dependent activated neuronal subsets using Fos2A-iCreER (TRAP2) mice. ⋯ Of interest, spinal neurons expressing calretinin, calbindin, and parvalbumin were activated differently with distinct pain modalities (ie, mechanical allodynia vs heat hyperalgesia). Chemogenetic inhibition of those activated neurons significantly and specifically reduced the response to the pain stimulus associated with the stimulus modality originally given to the animals. These findings support the idea that spinal neuronal ensembles underlying nociceptive transmission undergo dynamic changes to regulate selective pain responses.
-
This study aims to compare treatments and outcomes among Black and White patients with chronic low back pain in the United States. A retrospective cohort study was conducted within a pain research registry, including 1,443 participants with up to 3 years of follow-up. Pain treatments were measured at quarterly research encounters using reported current opioid use and prior lumbar spine surgery. ⋯ Greater efforts are needed to address the observed racial disparities. PERSPECTIVE: Widening racial disparities in pain and function over time indicate that new approaches to chronic pain management are needed in the United States. Considering race as a social framework represents an emerging strategy for planning and improving pain treatment services for Black patients.
-
Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. ⋯ Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve, 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
-
Leber hereditary optic neuropathy (LHON) is mainly the degeneration of retinal ganglion cells (RGCs) associated with high apoptosis and reactive oxygen species (ROS) levels, which is accepted to be caused by the mutations in the subunits of complex I of the mitochondrial electron transport chain. The treatment is still infant while efforts of correcting genes or using antioxidants do not bring good and consistent results. Unaffected carrier carries LHON mutation but shows normal phenotype, suggesting that the disease's pathogenesis is complex, in which secondary factors exist and cooperate with the primary complex I dysfunction. ⋯ We showed that the downregulation of miR548c-3p plays a critical role in modulating cellular dysfunction and the apoptotic program of RGCs in LHON.