Articles: function.
-
The pulmonary and cardiovascular systems have profound effects on each other. Overall cardiac function is determined by heart rate, preload, contractility, and afterload. Changes in lung volume, intrathoracic pressure (ITP), and hypoxemia can simultaneously change all of these four hemodynamic determinants for both ventricles and can even lead to cardiovascular collapse. ⋯ Heart-lung interaction is very dynamic and changes in lung volume, ITP, and oxygen level can have various effects on the cardiovascular system depending on preexisting cardiovascular function and volume status. Heart failure and either hypo or hypervolemia predispose to greater effects of ventilation of cardiovascular function and gas exchange. This review is an overview of the basics of heart-lung interaction.
-
Following discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989 and subsequent elucidation of the varied CFTR protein abnormalities that result, a new era of cystic fibrosis management has emerged-one in which scientific principles translated from the bench to the bedside have enabled us to potentially treat the basic defect in the majority of children and adults with cystic fibrosis, with a resultant burgeoning adult cystic fibrosis population. However, the long-term effects of these therapies on the multiple manifestations of cystic fibrosis are still under investigation. ⋯ Furthermore, establishing appropriate disease measures to assess efficacy in the youngest potential trial participants and in those whose post-modulator lung function is in the typical range for people without chronic lung disease is essential for continued drug development. Finally, recognising that a health outcome gap has been created for some people and widened for others who are not eligible for, cannot tolerate, or do not have access to modulators is important.
-
Review
The future of cystic fibrosis treatment: from disease mechanisms to novel therapeutic approaches.
With the 2019 breakthrough in the development of highly effective modulator therapy providing unprecedented clinical benefits for over 90% of patients with cystic fibrosis who are genetically eligible for treatment, this rare disease has become a front runner of transformative molecular therapy. This success is based on fundamental research, which led to the identification of the disease-causing CFTR gene and our subsequent understanding of the disease mechanisms underlying the pathogenesis of cystic fibrosis, working together with a continuously evolving clinical research and drug development pipeline. ⋯ We review progress in (and the remaining obstacles to) pharmacological approaches to rescue CFTR function, and novel strategies for improved symptomatic therapies for cystic fibrosis, including how these might be applicable to common lung diseases, such as bronchiectasis and chronic obstructive pulmonary disease. Finally, we discuss the promise of genetic therapies and gene editing approaches to restore CFTR function in the lungs of all patients with cystic fibrosis independent of their CFTR genotype, and the unprecedented opportunities to transform cystic fibrosis from a fatal disease to a treatable and potentially curable one.
-
Wrist pain on the ulnar side is often caused by ulnar impaction syndrome (UIS). Idiopathic UIS requires surgical treatment when conservative treatment fails. The 2 main surgical procedures used are the wafer procedure and ulnar shortening osteotomy (USO) of the metaphysis or diaphysis. This review aimed to analyze comparative studies of the 2 procedures in UIS to determine clinical outcomes and complications. ⋯ There was no difference in pain improvement or the postoperative functional score between the groups. Nevertheless, postoperative complications were the major pitfalls of USO. As the specialized shortening system advances further, a high-level study will be necessary to determine the surgical option in UIS.
-
Currently, theoretical studies on exosomes in respiratory diseases have received much attention from many scholars and have made remarkable progress, which has inestimable value and potential in future clinical and scientific research. Unfortunately, no scholar has yet addressed this field's bibliometric analysis and summary. We aim to comprehensively and profoundly study and explore the present situation and highlights of exosome research at the stage of respiratory diseases and to provide meaningful insights for the future development of this field. ⋯ The present research situation and relevant hotspots of the area were analyzed through bibliometric studies on exosomes in respiratory diseases. The research development in this field has a considerable upside, and the exosome's function in diagnosing, treating, monitoring, and prognosis of respiratory illnesses cannot be taken lightly. Moreover, we believe the research results will bring the gospel to many patients with clinical respiratory diseases shortly.