Articles: function.
-
General anesthetics adversely alters the distribution of infused fluid between the plasma compartment and the extravascular space. This maldistribution occurs largely from the effects of anesthetic agents on lymphatic pumping, which can be demonstrated by macroscopic fluid kinetics studies in awake versus anesthetized patients. ⋯ Anesthesia also blunts the transvascular refill response to bleeding, an important compensatory mechanism during hemorrhagic hypovolemia, in part through lymphatic inhibition. Last, this study addresses how catecholamines and hypertonic and hyperoncotic fluids may mobilize interstitial fluid to mitigate anesthesia-induced lymphatic dysfunction.
-
Atrial arrhythmias (AA) are common in patients with pulmonary hypertension (PH) and contribute to morbidity and mortality. Given the growing PH population, understanding the pathophysiology, clinical impact, and management of AA in PH is important. ⋯ This review highlights the epidemiology and pathophysiology of AA in patients with PH, describes the relationship between AA and RV dysfunction, and discusses current management practices. We outline our institutional approach and offer directions for future investigation.
-
Cannabinoids are increasingly used in the management of chronic pain. Although analgesic potential has been demonstrated, cannabinoids interact with a range of bodily functions that are also influenced by chronic pain medications, including opioids. ⋯ The available evidence directly investigating the pharmacodynamic effects following co-administration of cannabinoids and opioids for non-analgesic outcomes is scarce and suffers from a lack of methodological reporting. As such, further research in this area with comprehensive methodologic reporting is warranted.
-
Growing evidence has suggested that time-varying functional connectivity between different brain regions might underlie the dynamic experience of pain. This study used a novel, data-driven framework to characterize the dynamic interactions of large-scale brain networks during sustained pain by estimating recurrent patterns of phase-synchronization. Resting-state functional magnetic resonance imaging signals were collected from 50 healthy participants before (once) and after (twice) the onset of sustained pain that was induced by topical application of capsaicin cream. ⋯ These changes can account for the perceived pain intensity and reported unpleasantness induced by capsaicin application. In contrast, state 3, characterized by phase-synchronization between the cognitive control network and sensory networks, decreased after the onset of sustained pain. These results are indicative of a shift toward internally directed self-referential processes (state 1) and away from externally directed cognitive control processes (state 3) during sustained pain.
-
Intensive interdisciplinary pain treatments (IIPTs) are programs that aim to improve functioning in youth with severe chronic pain. Little is known about how the brain changes after IIPT; however, decreased brain responses to emotional stimuli have been identified previously in pediatric chronic pain relative to healthy controls. We examined whether IIPT increased brain responses to emotional stimuli, and whether this change was associated with a reduction in pain interference. ⋯ Contrary to our hypothesis, IIPT was associated with a reduction in MFG activation to emotional stimuli, and this change was associated with reduced pain interference. The MFG is a highly interconnected brain area involved in both pain chronification and antinociception. With further validation of these results, the MFG may represent an important biomarker for evaluating patient treatment response and target for future pain interventions.