Articles: function.
-
Repeated sensory exposures shape the brain's function and its responses to environmental stimuli. An important clinical and scientific question is how exposure to pain affects brain network activity and whether that activity is modifiable with training. We sought to determine whether repeated pain exposure would impact brain network activity and whether these effects can be reversed by cognitive behavioral therapy (CBT)-based training. ⋯ Finally, the regulate group showed enhanced resting functional connectivity between areas of the DMN and executive control network over time, compared with the control group. Our study demonstrates that trainable cognitive states can alter the effect of repeated sensory exposure on the brain. The findings point to the potential utility of cognitive training to prevent changes in brain network connectivity that occur with repeated experience of pain.
-
Use of tele-intensive care involves organizational and teamwork factors across geographic locations. This situation adds to the complexity of collaboration in providing quality patient-centered care. ⋯ Proper administration and attention to important cultural and teamwork factors are essential to making tele-intensive care units effective, practical, and sustainable.
-
Pain can be elicited through all mammalian sensory pathways yet cross-modal sensory integration, and its relationship to clinical pain, is largely unexplored. Centralized chronic pain conditions such as fibromyalgia are often associated with symptoms of multisensory hypersensitivity. In this study, female patients with fibromyalgia demonstrated cross-modal hypersensitivity to visual and pressure stimuli compared with age- and sex-matched healthy controls. ⋯ A separate SVM classification of treatment effects on visual-evoked activity reliably identified when patients were administered pregabalin as compared with placebo. Both SVM analyses identified significant weights within the insular cortex during aversive visual stimulation. These data suggest that abnormal integration of multisensory and pain pathways within the insula may represent a pathophysiological mechanism in some chronic pain conditions and that insular response to aversive visual stimulation may have utility as a marker for analgesic drug development.