Articles: sars-cov-2.
-
The anti-malarial drugs chloroquine (CQ) and primarily the less toxic hydroxychloroquine (HCQ) are currently used to treat autoimmune diseases for their immunomodulatory and anti-thrombotic properties. They have also been proposed for the treatment of several viral infections, due to their anti-viral effects in cell cultures and animal models, and, currently, for the treatment of coronavirus disease 2019 (COVID-19), the pandemic severe acute respiratory syndrome caused by coronavirus 2 (Sars-Cov-2) infection that is spreading all over the world. ⋯ Here we review what is currently known on the mechanisms of action of CQ and HCQ as anti-viral, anti-inflammatory and anti-thrombotic drugs and discuss the up-to-date experimental evidence on the potential mechanisms of action of CQ/HCQ in Sars-Cov2 infection and the current clinical knowledge on their efficacy in the treatment of COVID-19 patients. Given the role of iron in several human viral infections, we also propose a different insight into a number of CQ and HCQ pharmacological effects, suggesting a potential involvement of iron homeostasis in Sars-Cov-2 infection and COVID-19 clinical course.
-
Review
COVID-19 and SARS-Cov-2 Infection: Pathophysiology and Clinical Effects on the Nervous System.
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by SARS-Cov-2, resulting in severe acute respiratory syndrome, with high potential of spreading and infecting humans worldwide. Since December 2019, when the virus was identified in humans, the literature on COVID-19 has grown exponentially and extrarespiratory symptoms including neurologic symptoms are increasingly highlighted. ⋯ Management of COVID-19 patients should include early clinical, radiologic, and laboratory neurologic assessment, with a close follow-up, especially in severe forms. Future studies should assess late and long-term consequences of current COVID-19 patients with neurologic involvement.
-
A hyperinflammatory response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, reminiscent of cytokine release syndrome, has been implicated in the pathophysiology of acute respiratory distress syndrome and organ damage in patients with coronavirus disease 2019 (COVID-19). Agents that inhibit components of the pro-inflammatory cascade have garnered interest as potential treatment options with hopes that dampening the proinflammatory process may improve clinical outcomes. Baricitinib is a reversible Janus-associated kinase (JAK)-inhibitor that interrupts the signaling of multiple cytokines implicated in COVID-19 immunopathology. ⋯ The lack of reliable biomarkers to monitor patients' immune status as illness evolves complicates deployment of immunosuppressive drugs like baricitinib. Furthermore, baricitinib carries the risk of increased thromboembolic events, which is concerning given the proclivity towards a hypercoagulable state in patients with COVID-19. In this article, we review available data on baricitinib with an emphasis on immunosuppressive and antiviral pharmacology, pharmacokinetics, safety, and current progress in COVID-19 clinical trials.
-
Comparative Study Observational Study
Acute Appendicitis During Coronavirus Disease 2019 (COVID-19): Changes in Clinical Presentation and CT Findings.
Quarantine and stay-at-home orders are strategies that many countries used during the acute pandemic period of coronavirus disease 2019 (COVID-19) to prevent disease dissemination, health system overload, and mortality. However, there are concerns that patients did not seek necessary health care because of these mandates. ⋯ During the acute COVID-19 pandemic period, fewer patients presented with acute appendicitis to the emergency room, and those who did presented at a more severe stage of the disease.