Articles: sars-cov-2.
-
Review Comparative Study
The risk of COVID-19 transmission by laparoscopic smoke may be lower than for laparotomy: a narrative review.
Surgical smoke is a well-recognized hazard in the operating room. At the beginning of the COVID-19 pandemic, surgical societies quickly published guidelines recommending avoiding laparoscopy or to consider open surgery because of the fear of transmission of SARS-CoV-2 through surgical smoke or aerosol. This narrative review of the literature aimed to determine whether there are any differences in the creation of surgical smoke/aerosol between laparoscopy and laparotomy and if laparoscopy may be safer than laparotomy. ⋯ If laparoscopy is performed in a closed cavity enabling containment of surgical smoke/aerosol, and proper evacuation of smoke with simple measures is respected, and as long as laparoscopy is not contraindicated, we believe that this surgical approach may be safer for the operating team while the patient has the benefits of minimally invasive surgery. Evidence-based research in this field is needed for definitive determination of safety.
-
The coronavirus disease 2019 (COVID-19) pandemic caused by a novel coronavirus, SARS-CoV-2, has infected more than 22 million individuals and resulted in over 780,000 deaths globally. The rapid spread of the virus and the precipitously increasing numbers of cases necessitate the urgent development of accurate diagnostic methods, effective treatments, and vaccines. Here, we review the progress of developing diagnostic methods, therapies, and vaccines for SARS-CoV-2 with a focus on current clinical trials and their challenges. ⋯ Accordingly, numerous vaccines are under development. Vaccine candidates against SARS-CoV-2 are mainly based upon the viral spike protein due to its vital role in viral infectivity, and most of these candidates have recently moved into clinical trials. Before the efficacy of such vaccines in humans is demonstrated, strong international coordination and collaboration among studies, pharmaceutical companies, regulators, and governments are needed to limit further damage due the emerging SARS-CoV-2 virus.
-
The novel human coronavirus disease COVID-19 has become the fifth documented pandemic since the 1918 flu pandemic. COVID-19 was first reported in Wuhan, China, and subsequently spread worldwide. The coronavirus was officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses based on phylogenetic analysis. ⋯ Because the virus is highly contagious, it rapidly spreads and continuously evolves in the human population. In this review article, we discuss the basic properties, potential origin, and evolution of the novel human coronavirus. These factors may be critical for studies of pathogenicity, antiviral designs, and vaccine development against the virus.
-
Comparative Study
Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation.
There is an urgent need for reliable high-throughput serological assays for the management of the ongoing COVID-19 pandemic. Preferably, the performance of serological tests for a novel virus should be determined with clinical specimens against a gold standard, i.e. virus neutralisation. We compared the performance of six commercial immunoassays for the detection of SARS-COV-2 IgG, IgA and IgM antibodies, including four automated assays [Abbott SARS-COV-2 IgG (CE marked), Diasorin Liaison® SARS-COV-2 S1/S2 IgG (research use only, RUO), and Euroimmun SARS-COV-2 IgG and IgA (CE marked)], and two rapid lateral flow (immunocromatographic) tests [Acro Biotech 2019-nCoV IgG/IgM (CE marked) and Xiamen Biotime Biotechnology SARS-COV-2 IgG/IgM (CE marked)] with a microneutralisation test (MNT). ⋯ The specificity and sensitivity values of the commercial tests against MNT, respectively, were as follows: 95.1 %/80.5 % (Abbott Architect SARS-CoV-2 IgG), 94.9 %/43.8 % (Diasorin Liaison SARS-CoV-2 IgG; RUO), 68.3 %/87.8 % (Euroimmun SARS-CoV-2 IgA), 86.6 %/70.7 % (Euroimmun SARS-CoV-2 IgG), 74.4 %/56.1 % (Acro 2019-nCoV IgG), 69.5 %/46.3 % (Acro 2019-nCoV IgM), 97.5 %/71.9 % (Xiamen Biotime SARS-CoV-2 IgG), and 88.8 %/81.3 % (Xiamen Biotime SARS-CoV-2 IgM). This study shows variable performance values. Laboratories should carefully consider their testing process, such as a two-tier approach, in order to optimize the overall performance of SARS- CoV-2 serodiagnostics.
-
A hyperinflammatory response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, reminiscent of cytokine release syndrome, has been implicated in the pathophysiology of acute respiratory distress syndrome and organ damage in patients with coronavirus disease 2019 (COVID-19). Agents that inhibit components of the pro-inflammatory cascade have garnered interest as potential treatment options with hopes that dampening the proinflammatory process may improve clinical outcomes. Baricitinib is a reversible Janus-associated kinase (JAK)-inhibitor that interrupts the signaling of multiple cytokines implicated in COVID-19 immunopathology. ⋯ The lack of reliable biomarkers to monitor patients' immune status as illness evolves complicates deployment of immunosuppressive drugs like baricitinib. Furthermore, baricitinib carries the risk of increased thromboembolic events, which is concerning given the proclivity towards a hypercoagulable state in patients with COVID-19. In this article, we review available data on baricitinib with an emphasis on immunosuppressive and antiviral pharmacology, pharmacokinetics, safety, and current progress in COVID-19 clinical trials.