Articles: sars-cov-2.
-
Review
Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection.
Coronaviruses cause several human diseases, including severe acute respiratory syndrome. The global coronavirus disease 2019 (COVID-19) pandemic has become a huge threat to humans. ⋯ Here, we review gastrointestinal disorders in patients with COVID-19, suggest hypothetical mechanisms leading to gut symptoms, and discuss the potential consequences of gastrointestinal disorders on the outcome of the disease. Lastly, we discuss the role of the gut microbiota during respiratory viral infections and suggest that targeting gut dysbiosis may help to control the pathogenesis of COVID-19.
-
The coronavirus disease-19 (COVID-19) pandemic was associated with a large reduction in the number of attendances at emergency departments (EDs) in March 2020 in the United Kingdom (UK). We sought to identify which patient groups attended EDs least. ⋯ The reduction in ED attendances seen in the early phases of the UK pandemic occurred in all patient groups, but was greatest in the lower acuity patients. Reasons for this are complex and likely to be multifactorial.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 μM). ⋯ To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.
-
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This disease, which is quickly spreading worldwide, has high potential for infection and causes rapid progression of lung lesions, resulting in a high mortality rate. This study aimed to investigate the effects of SARS-CoV-2 infection on renal function in patients with COVID-19. ⋯ The incidence of AKI was not high in COVID-19 patients. The lower mortality rate in SARS-CoV-2 infection compared with previous Middle East respiratory syndrome and SARS-CoV infections is thought to be associated with a low incidence of dysfunction in organs other than the lungs.
-
COVID-19 has highlighted deficiencies in the testing capacity of many developed countries during the early stages of pandemics. Here we describe a strategy utilizing pan-family viral assays to improve early accessibility of large-scale nucleic acid testing. ⋯ Despite cross-reactivity with common pathogens, pan-family assays may greatly assist management of emerging pandemics through prioritization of high-resolution testing or isolation measures. Targeting highly conserved genomic regions make pan-family assays robust and resilient to mutation. A strategic stockpile of pan-family assays may improve containment of novel diseases prior to the availability of species-specific assays.